Therkildsenbarrera1416

From DigitalMaine Transcription Project
Revision as of 13:57, 15 August 2024 by Therkildsenbarrera1416 (talk | contribs) (Created page with "E70 (but did not affect this parameter in cv. SY) and prevented the stress-induced decline in WHC in both cultivars. Notably, B. subtilis 10-4 increased endogenous salicylic a...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

E70 (but did not affect this parameter in cv. SY) and prevented the stress-induced decline in WHC in both cultivars. Notably, B. subtilis 10-4 increased endogenous salicylic acid (SA) concentration in both cultivars, especially in cv. E70. Moreover, B. subtilis 10-4 reduced drought-induced endogenous SA accumulation, which was correlated with the influence of endophyte on growth, indicating a possible involvement of endogenous SA in the implementation of B. subtilis-mediated effects in both cultivars. Overall, B. subtilis 10-4 inoculation was found to increase drought tolerance in seedlings of both cultivars, as evidenced by decreased lipid peroxidation, proline content, and electrolyte leakage from tissues of wheat seedlings primed with B. subtilis 10-4 under drought conditions.Heat-stressed dairy animals increase their reliance on glucose. This elevated glucose demand is partially met by increasing the conversion of glucogenic amino acids (AA) in the liver. Propylene glycol (PG) is a glucogenic precursor and was not tested in dairy goats under thermoneutral (TN) and heat stress (HS) conditions simultaneously. We hypothesize that if HS-goats are fed with PG, they would get more glucose and consequently spare more glucogenic AA for milk protein synthesis rather than gluconeogenesis. Eight multiparous dairy goats (40.8 ± 1.1 kg body weight; 84 ± 1 days in milk) were used in a replicated 4 × 4 Latin square design of 4 periods; 21 d each (14 d adaptation, 5 d for measurements, and 2 d of transition). Goats were allocated to one of 4 treatments in a 2 × 2 factorial arrangement. Factors were control (CO) without PG or 5% of PG, and thermoneutral (TN; 15 to 20 °C) or heat stress (HS; 12 h/d at 37 °C and 12 h/d at 30 °C) conditions. Feed intake, rectal temperature, respiratory rate, milk yield, milk composition, and blood metabolites were measured. Compared to TN, HS goats had lower (p less then 0.01) feed intake (-34%), fat-corrected milk (-15%), and milk fat (-15%). Heat-stressed goats also tended (p less then 0.10) to produce milk with lower protein (-11%) and lactose (-4%) contents. Propylene glycol increased blood glucose (+7%; p less then 0.05), blood insulin (+37%; p less then 0.10), and body weight gain (+68%; p less then 0.05), but decreased feed intake (-9%; p less then 0.10) and milk fat content (-23%; p less then 0.01). Furthermore, blood non-esterified fatty acids (-49%) and β-hydroxybutyrate (-32%) decreased (p less then 0.05) by PG. In conclusion, supplementation of heat-stressed dairy goats with propylene glycol caused milk fat depression syndrome, but reduced body weight loss that is typically observed under HS conditions. Supplementation with lower doses of PG would avoid the reduced feed intake and milk fat depression, but this should be tested.Transmembrane protein with an EGF-like and two Follistatin-like domains 2 (TMEFF2) is a 374-residue long type-I transmembrane proteoglycan which is proteolytically shed from the cell surface. The protein is involved in a range of functions including metabolism, neuroprotection, apoptosis, embryonic development, onco-suppression and endocrine function. TMEFF2 is methylated in numerous cancers, and an inverse correlation with the stage, response to therapy and survival outcome has been observed. Moreover, TMEFF2 methylation increases with breast, colon and gastric cancer progression. TMEFF2 is methylated early during oncogenesis in breast and colorectal cancer, and the detection of methylated free-circulating TMEFF2 DNA has been suggested as a potential diagnostic tool. The TMEFF2 downregulation signature equals and sometimes outperforms the Gleason and pathological scores in prostate cancer. TMEFF2 is downregulated in glioma and cotricotropinomas, and it impairs the production of adrenocorticotropic hormone in glioma cells. Interestingly, through binding the amyloid β protein, its precursor and derivatives, TMEFF2 provides neuroprotection in Alzheimer's disease. Despite undergoing extensive investigation over the last two decades, the primary literature regarding TMEFF2 is incoherent and offers conflicting information, in particular, the oncogenic vs. onco-suppressive role of TMEFF2 in prostate cancer. For the first time, we have compiled, contextualised and critically analysed the vast body of TMEFF2-related literature and answered the apparent discrepancies regarding its function, tissue expression, intracellular localization and oncogenic vs. onco-suppressive role.In recent years, researchers across various fields have shown a keen interest in the exploitation of biocompatible natural polymer materials, especially the development and application of seaweed polysaccharides. Z-DEVD-FMK Seaweed polysaccharides are a multi-component mixture composed of one or more monosaccharides, which have the functions of being anti-virus, anti-tumor, anti-mutation, anti-radiation and enhancing immunity. These biological activities allow them to be applied in various controllable and sustained anti-inflammatory and anticancer drug delivery systems, such as seaweed polysaccharide-based nanoparticles, microspheres and gels, etc. This review summarizes the advantages of alginic acid, carrageenan and other seaweed polysaccharides, and focuses on their application in gel drug delivery systems (such as nanogels, microgels and hydrogels). In addition, recent literature reports and applications of seaweed polysaccharides are also discussed.Vegetative leaves in Arabidopsis are classified as either juvenile leaves or adult leaves based on their specific traits, such as leaf shape and the presence of abaxial trichomes. The timing of the juvenile-to-adult phase transition during vegetative development, called the vegetative phase change, is a critical decision for plants, as this transition is associated with crop yield, stress responses, and immune responses. Juvenile leaves are characterized by high levels of miR156/157, and adult leaves are characterized by high levels of miR156/157 targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. The discovery of this miR156/157-SPL module provided a critical tool for elucidating the complex regulation of the juvenile-to-adult phase transition in plants. In this review, we discuss how the traits of juvenile leaves and adult leaves are determined by the miR156/157-SPL module and how different factors, including embryonic regulators, sugar, meristem regulators, hormones, and epigenetic proteins are involved in controlling the juvenile-to-adult phase transition, focusing on recent insights into vegetative phase change. We also highlight outstanding questions in the field that need further investigation. Understanding how vegetative phase change is regulated would provide a basis for manipulating agricultural traits under various conditions.The human immunodeficiency virus type 1 (HIV-1) originated in non-human primates in West-central Africa and continues to be a major global public health issue, having claimed almost 33 million lives so far. In Africa, it is estimated that more than 20 million people are living with HIV/Acquired Immunodeficiency Syndrome (AIDS) and that more than 730,000 new HIV-1 infections still occur each year, likely due to low access to testing. The high genetic variability of HIV-1, due to a fast replication cycle and high mutation rate, may cause the generation of many viral variants in a single infected patient during a single day. Therefore, the active monitoring and characterization of the HIV-1 subtypes and recombinant forms circulating through African countries poses a significant challenge to more specific diagnoses, treatments, care, and intervention strategies. In this review, a concise characterization of all the subtypes and recombinant forms circulating in Africa is presented to highlight the magnitude of the HIV-1 threat among the African countries and to understand virus genetic diversity and dispersion dynamics better.In this tribute to John B. Goodenough I will describe how John's talk on the metal-to-nonmetal transition of vanadium oxide VO2, presented at the Bordeaux Conference (September 1964) attended by inorganic chemists, metallurgists, crystallographers, thermodynamicists and physicists, provided a pioneering vision of interdisciplinary research to come. John gave a complete description of the paradigm on how the physical properties of a solid depend on its structure and bonding, by employing the chemical notions as local distortions and interatomic distances as well as the physics notions such as band width and the Hubbard on-site repulsion U. I will illustrate how inspiring John's ideas were, by discussing the research examples of my own research group in the sixties-seventies. The fundamental approach of John B. Goodenough to Solid State Chemistry, leading particularly to lithium battery applications, is at the heart of the 2019 Nobel Prize awarded to John.Urbanization and climate change have been rapidly occurring globally. Evidence-based healthy city development is required to improve living quality and mitigate the adverse impact of the outdoor neighborhood environment on public health. Taking Guangzhou as an example to explore the association of neighborhood environment and public health and preferably to offer some implications for better future city development, we measured ten environmental factors (temperature (T), wind-chill index (WCI), thermal stress index (HSI), relative humidity (RH), average wind speed (AWS), negative oxygen ions (NOI), PM2.5, luminous flux (LF), and illuminance (I)) in four seasons in four typical neighborhoods, and the SF-36 health scale was employed to assess the physical and mental health of neighborhood residents in nine subscales (health transition(HT), physiological functions (PF), general health status (GH), physical pain (BP), physiological functions (RP), energy vitality (VT), mental health (MH), social function (SF), and emotional functions (RE)). The linear mixed model was used in an analysis of variance. We ranked the different environmental factors in relation to aspects of health and weighted them accordingly. Generally, the thermal environment had the greatest impact on both physical and mental health and the atmospheric environment and wind environment had the least impact on physical health and mental health, respectively. In addition, the physical health of the resident was more greatly affected by the environment than mental health. According to the results, we make a number of strategic suggestions for the renewal of the outdoor neighborhood environment in subtropical monsoon climate high-density cities and provide a theoretical basis for improving public health through landscape architecture at the neighborhood scale.Age-related macular degeneration (AMD) is the leading cause of blindness affecting the elderly in the Western world. The most severe form of AMD, wet AMD (wAMD), is characterized by choroidal neovascularization (CNV) and acute vision loss. The current treatment for these patients comprises monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) antibodies, but this treatment is expensive, uncomfortable for the patient, and only effective in some individuals. AMD is a complex disease that has strong associations with the complement system. All three initiating complement pathways may be relevant in CNV formation, but most evidence indicates a major role for the alternative pathway (AP) and for the terminal complement complex, as well as certain complement peptides generated upon complement activation. Since the complement system is associated with AMD and CNV, a complement inhibitor may be a therapeutic option for patients with wAMD. The aim of this review is to (i) reflect on the possible complement targets in the context of wAMD pathology, (ii) investigate the results of prior clinical trials with complement inhibitors for wAMD patients, and (iii) outline important considerations when developing a future strategy for the treatment of wAMD.