Schwarzwilkins6720
Inhibitors of sodium/glucose co-transporter 2 (SGLT2) are currently in clinical use for type 2 diabetes (T2D) treatment due to their anti-hyperglycemic effect exerted by the inhibition of glucose reabsorption in the kidney. Inhibition of SGLT2 is associated with improvement of renal outcomes in chronic kidney disease associated with T2D. Our study aimed to describe the renal-specific phenotypic consequences of the SGLT2-loss of function "Jimbee" mutation within the Slc5a2 mouse gene in a non-diabetic/non-obese background. The Jimbee mice displayed reduced body weight, glucosuria, polyuria, polydipsia, and hyperphagia but were normoglycemic, with no signs of baseline insulin resistance or renal dysfunction. Histomorphological analysis of the kidneys revealed a normal architecture and morphology of the renal cortex, but shrinkage of the glomerular and tubular apparatus, including Bowman's space, glomerular tuft, mesangial matrix fraction, and proximal convoluted tubule (PCT). Immunofluorescent analysis of renal sections showed that SGLT2 was absent from the apical membrane of PCT of the Jimbee mice but remnant positive vesicles were detected within the cytosol or at the perinuclear interface. Renal localization and abundance of GLUT1, GLUT2, and SGLT1 were unchanged in the Jimbee genotype. SU5416 Intriguingly, the mutation did not induce hepatic gluconeogenic gene expression in overnight fasted mice despite a high glucose excretion rate. The Jimbee phenotype is remarkably similar to humans with SLC5A2 mutations and provides a useful model for the study of SGLT2-loss of function effects on renal architecture and physiology, as well as for identifying possible novel roles for the kidneys in glucose homeostasis and metabolic reprogramming.Amniotes originated on land, but aquatic/amphibious groups emerged multiple times independently in amniotes. On becoming aquatic, species with different phylogenetic backgrounds and body plans have to adapt themselves to handle similar problems inflicted by their new environment, and this makes aquatic adaptation of amniotes one of the greatest natural experiments. Particularly, evolution of the sense of smell upon aquatic adaptation is of great interest because receptors required for underwater olfaction differ remarkably from those for terrestrial olfaction. Here, I review the olfactory capabilities of aquatic/amphibious amniotes, especially those of cetaceans and sea snakes. Most aquatic/amphibious amniotes show reduced olfactory organs, receptor gene repertoires, and olfactory capabilities. Remarkably, cetaceans and sea snakes show extreme examples cetaceans have lost the vomeronasal system, and furthermore, toothed whales have lost all of their olfactory nervous systems. Baleen whales can smell in the air, but their olfactory capability is limited. Fully aquatic sea snakes have lost the main olfactory system but they retain the vomeronasal system for sensing underwater. Amphibious species show an intermediate status between terrestrial and aquatic species, implying their importance on understanding the process of aquatic adaptation. The olfactory capabilities of aquatic amniotes are diverse, reflecting their diverse phylogenetic backgrounds and ecology.Noses are extremely sophisticated chemical detectors allowing animals to use scents to interpret and navigate their environments. Odor detection starts with the activation of odorant receptors (ORs), expressed in mature olfactory sensory neurons (OSNs) populating the olfactory mucosa. Different odorants, or different concentrations of the same odorant, activate unique ensembles of ORs. This mechanism of combinatorial receptor coding provided a possible explanation as to why different odorants are perceived as having distinct odors. Aided by new technologies, several recent studies have found that antagonist interactions also play an important role in the formation of the combinatorial receptor code. These findings mark the start of a new era in the study of odorant-receptor interactions and add a new level of complexity to odor coding in mammals.Topologically protected chiral skyrmions are an intriguing spin texture that has attracted much attention because of fundamental research and future spintronic applications. MnSi with a non-centrosymmetric structure is a well-known material hosting a skyrmion phase. To date, the preparation of MnSi crystals has been investigated by using special instruments with an ultrahigh vacuum chamber. Here, we introduce a facile way to grow MnSi films on a sapphire substrate using a relatively low vacuum environment of conventional magnetron sputtering. Although the as-grown MnSi films have a polycrystalline nature, a stable skyrmion phase in a broad range of temperatures and magnetic fields is observed via magnetotransport properties including phenomenological scaling analysis of the Hall resistivity contribution. Our findings provide not only a general way to prepare the materials possessing skyrmion phases but also insight into further research to stimulate more degrees of freedom in our inquisitiveness.The objective of the study was to evaluate the performance of different crossbreeds, viz., two-breed crosses including HN-50 (50% Hampshire × 50% Niang Megha) and HN-75 (75% Hampshire × 25% Niang Megha) and three-breed cross, HND (25% Hampshire × 25% Niang Megha × 50% Duroc) for suggesting suitable crossbred pigs with appropriate inheritance for subtropical Eastern Himalayan hilly climate. These crossbreed pigs were reared in standard management conditions in Nucleus Pig Breeding Farm of ICAR RC for NEH region. A total of 1995 records were collected which included data on production performance (n = 1466), reproductive performance (n = 428) and carcass traits (n = 101) from farm record book maintained over a period of 7 years. Productive performance included body weight, ADG and FCR at different stages of growth. The study revealed productive performance was highest in two-breed cross of pigs with 75% H inheritance (HN-75) and three-breed cross (HND) pigs. Reproductive performance included ages at puberty, first conception and first farrowing, along with inter-farrowing interval, pregnancy and farrowing rate as well as litter performance.