Cortezbecker2361

From DigitalMaine Transcription Project
Revision as of 22:10, 12 November 2024 by Cortezbecker2361 (talk | contribs) (Created page with "OBJECTIVE To assess neurofilaments as neurodegenerative biomarkers in serum of patients with Friedreich's ataxia. METHODS Single molecule array measurements of neurofilament l...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

OBJECTIVE To assess neurofilaments as neurodegenerative biomarkers in serum of patients with Friedreich's ataxia. METHODS Single molecule array measurements of neurofilament light (NfL) and heavy chain (pNfH) in 99 patients with genetically confirmed Friedreich's ataxia. Correlation of NfL/pNfH serum levels with disease severity, disease duration, age, age at onset, and GAA repeat length. RESULTS Median serum levels of NfL were 21.2 pg/ml (range 3.6-49.3) in controls and 26.1 pg/ml (0-78.1) in Friedreich's ataxia (p = 0.002). pNfH levels were 23.5 pg/ml (13.3-43.3) in controls and 92 pg/ml (3.1-303) in Friedreich's ataxia (p = 0.0004). NfL levels were significantly increased in younger patients (age 16-31 years, p  less then  0.001) and patients aged 32-47 years (p = 0.008), but not in patients of age 48 years and older (p = 0.41). In a longitudinal assessment, there was no difference in NfL levels in 14 patients with repeated sampling 2 years after baseline measurement. Levels of NfL correlated inversely with GAA1 repeat length (r = - 0.24, p = 0.02) but not with disease severity (r = - 0.13, p = 0.22), disease duration (r = - 0.06, p = 0.53), or age at onset (r = 0.05, p = 0.62). CONCLUSION Serum levels of NfL and pNfH are elevated in Friedreich's ataxia, but differences to healthy controls decrease with increasing age. Long-term longitudinal data are required to explore whether this reflects a selection bias from early death of more severely affected individuals or a slowing down of the neurodegenerative process with age. In a pilot study over 2 years of follow-up-a period relevant for biomarkers indicating treatment effects-we found NfL levels to be stable.Spiders are important bio-control agents of rice insect pests such as plant- and leafhoppers. To investigate temporal changes in spider prey and variations in prey due to landscape structure around rice fields, carbon and nitrogen stable isotopes of rice field arthropods were analysed over three consecutive sampling dates during the rice cropping season. Initial isotope composition of gnats and midges emerging from submersed rice fields indicates a larval algae diet, while later values suggest a switch to rice-derived carbon. Initial δ13C values of plant- and leafhoppers were higher in fields of rice-heterogeneous landscapes, indicating migration from source populations feeding on C4 grasses into rice fields; later, their δ13C values approached those of rice. Isotope values of web-building and cursorial spiders in the earliest samples indicate aquatic gnat and midge prey. The later shift toward terrestrial herbivore prey was more pronounced for small than for larger species and in rice paddies near permanent vegetation, indicating use of prey from the surrounding landscape. The results suggest that rice field spiders are supported by three different carbon pools (1) aquatic carbon originating from algae and (2) legacy carbon from previous growing cycles, both incorporated via between-season predation on gnats and midges, and (3) carbon from the current rice season incorporated via herbivore prey. In conclusion, fostering aquatic midge and gnat larvae, e.g. via mulching, and integrating rice fields into rice-heterogeneous landscapes likely strengthens biological control of pest species in rice paddies by supporting high populations of spiders between cropping seasons.Even a cursory view on the debate about intersectionality reveals that this is not a coherent theory or a uniform approach to the investigation of multiple inequalities. Instead openness and ambiguity are described as central characteristics of the concept, which result from the diversity of the reference theories and the multidimensionality of the categories of difference and relationships of inequality to be examined. In this article the question as to whether an intersectional perspective can provide new insights for gerontological research is explored.Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. click here Fibroblast growth factor 9 (FGF9) regulates bone development. Fgf9-/- mice exhibit disproportionate shortening of proximal skeletal elements. Fgf9 missense mutations in mice and humans induce joint synostosis. Thus, FGF9 is critical for regulating bone length and joint formation. Conversely, mechanisms regulating bone width remain unclear. Here, we showed that the homozygous elbow knee synostosis (Eks) mutant mice harboring N143T mutation in Fgf9 have wide long bones at birth. We investigated the cellular and molecular mechanisms underlying the widened prospective humerus in Fgf9Eks/Eks embryos. Increased and expanded FGF signaling in concert with wider expression domain of Fgf receptor 3 (Fgfr3) during chondrogenic condensation of the humerus led to widened cartilage, which resulted in the formation of wider prospective humeri in neonatal Fgf9Eks/Eks mice. Increased and expanded FGF signaling during chondrogenic condensation led to increased density of chondrocytes of the humeri accompanied by increased proliferation of chondrocytes which express inappropriately higher levels of cyclin D1 in Fgf9Eks/Eks embryos. The results suggest that FGF9 regulates the width of prospective long bones by controlling the width of chondrogenic condensation.OBJECTIVES We aimed to develop a radiomics-based model derived from gadoxetic acid-enhanced MR images to preoperatively identify cytokeratin (CK) 19 status of hepatocellular carcinoma (HCC). METHODS A cohort of 227 patients with single HCC was classified into a training set (n = 159) and a time-independent validated set (n = 68). A total of 647 radiomic features were extracted from multi-sequence MR images. The least absolute shrinkage and selection operator regression and decision tree methods were utilized for feature selection and radiomics signature construction. A multivariable logistic regression model incorporating clinico-radiological features and the fusion radiomics signature was built for prediction of CK19 status by evaluating area under curve (AUC). RESULTS In the whole cohort, 57 patients were CK19 positive and 170 patients were CK19 negative. By combining 11 and 6 radiomic features extracted in arterial phase and hepatobiliary phase images, respectively, a fusion radiomics signature achieved AUCs of 0.