Wittalford2415

From DigitalMaine Transcription Project
Revision as of 13:39, 22 November 2024 by Wittalford2415 (talk | contribs) (Created page with "Genomic integrity is threatened by cytotoxic DNA double-strand breaks (DSBs), which must be resolved efficiently to prevent sequence loss, chromosomal rearrangements/transloca...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Genomic integrity is threatened by cytotoxic DNA double-strand breaks (DSBs), which must be resolved efficiently to prevent sequence loss, chromosomal rearrangements/translocations, or cell death. Polymerase μ (Polμ) participates in DSB repair via the nonhomologous end-joining (NHEJ) pathway, by filling small sequence gaps in broken ends to create substrates ultimately ligatable by DNA Ligase IV. Here we present structures of human Polμ engaging a DSB substrate. Synapsis is mediated solely by Polμ, facilitated by single-nucleotide homology at the break site, wherein both ends of the discontinuous template strand are stabilized by a hydrogen bonding network. The active site in the quaternary Pol μ complex is poised for catalysis and nucleotide incoporation proceeds in crystallo. These structures demonstrate that Polμ may address complementary DSB substrates during NHEJ in a manner indistinguishable from single-strand breaks.Funds to combat biodiversity loss are insufficient, requiring conservation managers to make trade-offs between costs for actions to avoid further loss and costs for research and monitoring to guide effective actions. Using species' management plans for 2328 listed species from three countries we show that 50% of species' proposed recovery plan budgets are allocated to research and monitoring. The proportion of budgets allocated to research and monitoring vary among jurisdictions and taxa, but overall, species with higher proportions of budgets allocated to research and monitoring have poorer recovery outcomes. Tenapanor mw The proportion allocated to research and monitoring is lower for more recent recovery plans, but for some species, plans have allocated the majority of funds to information gathering for decades. We provide recommendations for careful examination of the value of collecting new information in recovery planning to ensure that conservation programs emphasize action or research and monitoring that directly informs action.Sarcomas constitute a rare heterogeneous group of tumors, including a wide variety of histological subtypes. Despite advances in our understanding of the pathophysiology of the disease, first-line sarcoma treatment options are still limited and new treatment approaches are needed. Histone H2AX phosphorylation is a sensitive marker for double strand breaks and has recently emerged as biomarker of DNA damage for new drug development. In this study, we explored the role of H2AX phosphorylation at Ser139 alone or in combination with MAP17 protein, an inducer of DNA damage through ROS increase, as prognostic biomarkers in sarcoma tumors. Next, we proposed doxorubicin and olaparib combination as potential therapeutic strategies against sarcomas displaying high level of both markers. We evaluate retrospectively the levels of pH2AX (Ser139) and MAP17 in a cohort of 69 patients with different sarcoma types and its relationship with clinical and pathological features. We found that the levels of pH2AX and MAP17 were related to clinical features and poor survival. Next, we pursued PARP1 inhibition with olaparib to potentiate the antitumor effect of DNA damaging effect of the DNA damaging agent doxorubicin to achieve an optimal synergy in sarcoma. We demonstrated that the combination of olaparib and doxorubicin was synergistic in vitro, inhibiting cell proliferation and enhancing pH2AX intranuclear accumulation, as a result of DNA damage. The synergism was corroborated in patient-derived xenografts (PDX) where the combination was effective in tumors with high levels of pH2AX and MAP17, suggesting that both biomarkers might potentially identify patients who better benefit from this combined therapy.Preventing aggregation of amyloid beta (Aβ) peptides is a promising strategy for the treatment of Alzheimer's disease (AD), and gold nanoparticles have previously been explored as a potential anti-Aβ therapeutics. Here we design and prepare 3.3 nm L- and D-glutathione stabilized gold nanoparticles (denoted as L3.3 and D3.3, respectively). Both chiral nanoparticles are able to inhibit aggregation of Aβ42 and cross the blood-brain barrier (BBB) following intravenous administration without noticeable toxicity. D3.3 possesses a larger binding affinity to Aβ42 and higher brain biodistribution compared with its enantiomer L3.3, giving rise to stronger inhibition of Aβ42 fibrillation and better rescue of behavioral impairments in AD model mice. This conjugation of a small nanoparticle with chiral recognition moiety provides a potential therapeutic approach for AD.Obtaining genetic variation information from indica rice hybrid parents and identification of loci associated with heterosis are important for hybrid rice breeding. Here, we resequence 1,143 indica accessions mostly selected from the parents of superior hybrid rice cultivars of China, identify genetic variations, and perform kinship analysis. We find different hybrid rice crossing patterns between 3- and 2-line superior hybrid lines. By calculating frequencies of parental variation differences (FPVDs), a more direct approach for studying rice heterosis, we identify loci that are linked to heterosis, which include 98 in superior 3-line hybrids and 36 in superior 2-line hybrids. As a proof of concept, we find two accessions harboring a deletion in OsNramp5, a previously reported gene functioning in cadmium absorption, which can be used to mitigate rice grain cadmium levels through hybrid breeding. Resource of indica rice genetic variation reported in this study will be valuable to geneticists and breeders.Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades.