Murdockduggan3286

From DigitalMaine Transcription Project
Revision as of 14:13, 22 November 2024 by Murdockduggan3286 (talk | contribs) (Created page with "Moreover, we develop a computational method to perform the proposed tests, which integrates an alternating direction method of multipliers and difference convex programming. F...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Moreover, we develop a computational method to perform the proposed tests, which integrates an alternating direction method of multipliers and difference convex programming. Finally, the power analysis and simulations suggest that the tests achieve the desired objectives of inference. An analysis of an Alzheimer's disease gene expression dataset illustrates the utility of the proposed method to infer a directed pathway in a gene network.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Rhabdomyosarcoma is a rare childhood soft tissue cancer whose cells resemble poorly differentiated skeletal muscle, expressing myogenic proteins including MYOGENIN. Alveolar rhabdomyosarcoma (ARMS) accounts for ~40% of cases and is associated with a poorer prognosis than other rhabdomyosarcoma variants, especially if containing the chromosomal translocation generating the PAX3-FOXO1 hybrid transcription factor. Metastasis is commonly present at diagnosis, with a five-year survival rate of less then 30%, highlighting the need for novel therapeutic approaches. We designed a suicide gene therapy by generating an ARMS-targeted promoter to drive the herpes simplex virus thymidine kinase (HSV-TK) suicide gene. We modified the minimal human MYOGENIN promoter by deleting both the NF1 and MEF3 transcription factor binding motifs to produce a promoter that is highly active in ARMS cells. Our bespoke ARMS promoter driving HSV-TK efficiently killed ARMS cells in vitro, but not skeletal myoblasts. Using a xenograft mouse model, we also demonstrated that ARMS promoter-HSV-TK causes apoptosis of ARMS cells in vivo. Importantly, combining our suicide gene therapy with standard chemotherapy agents used in the treatment of rhabdomyosarcoma, reduced the effective drug dose, diminishing deleterious side effects/patient burden. This modified, highly ARMS-specific promoter could provide a new therapy option for this difficult-to-treat cancer.The prokaryote-derived CRISPR-Cas genome editing technology has altered plant molecular biology beyond all expectations. Characterized by robustness and high target specificity and programmability, CRISPR-Cas allows precise genetic manipulation of crop species, which provides the opportunity to create germplasms with beneficial traits and to develop novel, more sustainable agricultural systems. Furthermore, the numerous emerging biotechnologies based on CRISPR-Cas platforms have expanded the toolbox of fundamental research and plant synthetic biology. In this Review, we first briefly describe gene editing by CRISPR-Cas, focusing on the newest, precise gene editing technologies such as base editing and prime editing. We then discuss the most important applications of CRISPR-Cas in increasing plant yield, quality, disease resistance and herbicide resistance, breeding and accelerated domestication. We also highlight the most recent breakthroughs in CRISPR-Cas-related plant biotechnologies, including CRISPR-Cas reagent delivery, gene regulation, multiplexed gene editing and mutagenesis and directed evolution technologies. Finally, we discuss prospective applications of this game-changing technology.The emergence of novel sequencing technologies has greatly improved the identification of structural variation, revealing that a human genome harbors tens of thousands of structural variants (SVs). Since these SVs primarily impact noncoding DNA sequences, the next challenge is one of interpretation, not least to improve our understanding of human disease etiology. However, this task is severely complicated by the intricacy of the gene regulatory landscapes embedded within these noncoding regions, their incomplete annotation, as well as their dependence on the three-dimensional (3D) conformation of the genome. Also in the context of neurodevelopmental disorders (NDDs), reports of putatively causal, noncoding SVs are accumulating and understanding their impact on transcriptional regulation is presenting itself as the next step toward improved genetic diagnosis.

Copy-number variant (CNV) analysis is increasingly performed in genetic diagnostics. KG-501 order We leveraged recent gene curation efforts and technical standards for interpretation and reporting of CNVs to characterize clinically relevant CNVs in patients with inherited heart disease and sudden cardiac death.

Exome sequencing data were analyzed for CNVs using eXome-Hidden Markov Model tool in 48 established disease genes. CNV breakpoint junctions were characterized. CNVs were classified using the American College of Medical Genetics and Genomics technical standards.

We identified eight CNVs in 690 unrelated probands (1.2%). Characterization of breakpoint junctions revealed nonhomologous end joining was responsible for four deletions, whereas one duplication was caused by nonallelic homologous recombination between duplicated sequences in MYH6 and MYH7. Identifying the precise breakpoint junctions determined the genomic involvement and proved useful for interpreting the clinical relevance of CNVs. Three large deletions involving TTN, MYBPC3, and KCNH2 were classified as pathogenic in three patients. Haplotype analysis of a deletion in ACTN2, found in two families, suggests the deletion was caused by an ancestral event.

CNVs infrequently cause inherited heart diseases and should be investigated when standard genetic testing does not reveal a genetic diagnosis.

CNVs infrequently cause inherited heart diseases and should be investigated when standard genetic testing does not reveal a genetic diagnosis.Cervical cancer ranks second in the major causes of cancer-relevant death in female population worldwide. It is extensively reported that lncRNAs are implicated in biological activities of diverse cancers. LncRNA PTENP1 has been recently reported as a tumor suppressor in several malignancies. However, the pathophysiological function and the potential regulatory mechanism of PTENP1 in cervical cancer have never been studied. In this research, PTENP1 was pronouncedly downregulated in cervical cancer tissues, and low PTENP1 level was tightly linked to advanced stage and poor prognosis in cervical cancer. Overexpressing PTENP1 inhibited cervical cancer progression by suppressing cell growth, motility and epithelial-to-mesenchymal transition (EMT). PTENP1 was confirmed to decoy miR-27a-3p to upregulate EGR1 expression in cervical cancer cells. Additionally, EGR1 knockdown reversed the repressive effect of PTENP1 overexpression on cervical cancer progression. In a word, current study was the first to uncover the biological functions of PTENP1 as well as its modulatory mechanism in cervical cancer, which may offer a new potent target for treating patients with cervical cancer.