Hurstlundgren1101

From DigitalMaine Transcription Project
Revision as of 14:16, 22 November 2024 by Hurstlundgren1101 (talk | contribs) (Created page with "The effect of static magnetic field (SMF) on azo dye Acid Red B (ARB) decolorization by the co-culture of activated sludge (AS) and two halotolerant yeasts Candida tropicalis...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The effect of static magnetic field (SMF) on azo dye Acid Red B (ARB) decolorization by the co-culture of activated sludge (AS) and two halotolerant yeasts Candida tropicalis A1 and Pichia occidentalis A2 was investigated. Microbial community structure of the co-cultures before and after treatment with SMFs of different intensity was analyzed through high-throughput sequencing and quantitative real-time polymerase chain reaction. The results showed that ARB decolorization efficiency by the defined co-culture was 1.25-fold to 1.51-fold elevated by 24.6-305.0 mT SMF. The best ARB decolorization and chemical oxygen demand (COD) removal performances by the co-culture were both achieved with 95.0 mT SMF. By contrast, biomass multiplication and sedimentation property of AS systems were not significantly influenced by SMF. Higher activities of intracellular key enzymes were determined (with 95.0 mT SMF) as responsible for better decolorization and COD removal performances. Bacteria belonging to Prolixibacter, Corynebacterium, Pelagibacterium, Demequina, and Sphingobacterium which might be responsible for azo dye decolorization and aromatic compounds biodegradation were significantly enriched only in presence of SMF. Fungal genera Candida and Pichia were also significantly enriched by 41.4-305.0 mT SMF, which might be responsible for higher treatment efficiency. PRACTITIONER POINTS Dye degradation was enhanced by combination of static magnetic field and yeasts. Improvement of enzyme activity was responsible for better treatment performance. Putative azo-degrading-related bacteria and fungi were selectively enriched. High relative abundance of Candida and Pichia ensured high decolorization effects. Potentially effective improvement of bioprocesses for treating hypersaline wastewater.The endogenous non-coding microRNA (miRNA) let-7b-5p is highly expressed in the blood of patients with acute pulmonary embolism (PE). However, the mechanism underlying the involvement of let-7b-5p in acute PE remains unclear. To address this, we investigated the role of let-7b-5p in acute PE in both in vitro and in vivo experimental models. The results showed that let-7b-5p upregulated the expression of stress-associated endoplasmic reticulum protein 1 (SERP1) at the post-transcriptional level. SERP1 activation leads to modulation of its chaperone protein SEC61B in the response of endoplasmic reticulum (ER) stress. Furthermore, our data show that the unfolded protein response was triggered and activation of unfolded proteins GRP78, PERK, RNF121, and CHOP occurred through the PERK-CHOP pathway, resulting in an inflammatory response and apoptosis of lung epithelial cells. These characteristics were promoted by the in vitro expression of a let-7b-5p mimic; conversely, transfection with a let-7b-5p inhibitor decreased the response of ER stress in acute PE. The results from this study thus provide evidence that let-7b-5p promotes protein processing during ER stress response by upregulating SERP1 expression, ultimately resulting in an inflammatory response and apoptosis of lung cells, cumulatively playing a critical role in the pathogenesis of acute PE.As more genome sequences are elucidated, there is an increasing need for information about the functions of the millions of proteins they encode. The function of a newly sequenced protein is often estimated by sequence alignment with the sequences of proteins with known functions. However, protein superfamilies can contain members that share significant amino acid sequence and structural homology yet catalyze different reactions or act on different substrates. Some homologous proteins differ by having a second or even third function, called moonlighting proteins. Acetylcysteine More recently, it was found that most protein superfamilies also include pseudoenzymes, a protein, or a domain within a protein, that has a three-dimensional fold that resembles a conventional catalytically active enzyme, but has no catalytic activity. In this review, we discuss several examples of protein families that contain enzymes, pseudoenzymes, and moonlighting proteins. It is becoming clear that pseudoenzymes and moonlighting proteins are widespread in the evolutionary tree, and in many protein families, and they are often very similar in sequence and structure to their monofunctional and catalytically active counterparts. A greater understanding is needed to clarify when similarities and differences in amino acid sequences and structures correspond to similarities and differences in biochemical functions and cellular roles. This information can help improve programs that identify protein functions from sequence or structure and assist in more accurate annotation of sequence and structural databases, as well as in our understanding of the broad diversity of protein functions.Background Increasing evidence shows that chronic inflammation plays an important role in thyroid tumorigenesis. Cytokines as central mediators in inflammatory microenvironment can present both protumor and antitumor effects and cytokine release may be influenced by soluble HLA-G (sHLA-G), an immune checkpoint molecule whose expression can also be induced by certain cytokines. Aim To understand the role of these soluble factors in papillary thyroid cancer (PTC). Methods We evaluated plasma levels of sHLA-G and of 13 cytokines using ELISA and flow cytometry, respectively, in PTC patients at two time points pre- and post-thyroidectomy; and control subjects. Results Compared to controls, IL-6 levels were increased, while IL-1β, IFN-α and TGF-β1 levels were decreased in pre-thyroidectomy PTC patients. IFN-α and TGF-β1 efficiently discriminated patients from controls and were associated with extrathyroidal extension and lymph node metastasis, respectively. In addition, TNF and IL-13 were associated with male gender, lymph node metastasis and Hashimoto thyroiditis, and sHLA-G with tumor invasion. Compared to pre-thyroidectomy, IL-4, IL-10, TNF, IFN-α and TGF-β1 levels were increased in post-thyroidectomy. Conclusion There are significant changes in the cytokine profile after surgical removal of the thyroid tumor, and IFN-α e TGF-β1 showed to be promising cytokines for discriminating PTC patients from controls. We also found that different cytokines are associated with clinicohistopathological characteristics of PTC related to poor prognosis, suggesting that cytokines seem to play an important role in PTC development and management.