Rossencheek3056

From DigitalMaine Transcription Project
Revision as of 17:15, 22 November 2024 by Rossencheek3056 (talk | contribs) (Created page with "The preparation of compounds with novel atomic oxidation states and emergent properties is of fundamental interest in chemistry. As s-block elements, alkali-earth metals invar...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The preparation of compounds with novel atomic oxidation states and emergent properties is of fundamental interest in chemistry. As s-block elements, alkali-earth metals invariably show a +2 formal oxidation state at normal conditions, and among them, barium (Ba) presents the strongest chemical reactivity. Herein, we propose that novel valence states of Ba can be achieved in pressure-induced chalcogenides, where it also shows a feature of 5d-elements. First-principles swarm-intelligence structural search calculations identify three novel stoichiometric compounds BaCh4 (Ch = O, S) containing Ba2+, Ba3Ch2 (Ch = S, Se, Te) with Ba+ and Ba2+, and Ba2Ch (Ch = Se, Te) with Ba+ cations. The pressure-induced drop of the Ba 5d level relative to Ba 6s is responsible for this unusual oxidation state. These compounds display captivating structural characters, such as Ba-centered polyhedra and chain-shaped Ch units. More interestingly still, the interaction between two Ba+ ions ensures their structural stability.A catalytic intermolecular amination of nonactivated tertiary C(sp3)-H bonds (BDE of 96 kcal·mol-1) is reported for substrates displaying an activated benzylic site (BDE of 85 kcal·mol-1). The tertiary C(sp3)-H bond is selectively functionalized to afford α,α,α-trisubstituted amides in high yields. This unusual site-selectivity results from the synergistic combination of Rh2(S-tfpttl)4, a rhodium(II) complex with a well-defined catalytic pocket, with tert-butylphenol sulfamate (TBPhsNH2), which leads to a discriminating rhodium-bound nitrene species under mild oxidative conditions. This catalytic system is very robust, and the reaction was performed on a 50 mmol scale with only 0.01 mol % of catalyst. The TBPhs group can be removed under mild conditions to afford the corresponding NH-free amines.MAT2a is a methionine adenosyltransferase that synthesizes the essential metabolite S-adenosylmethionine (SAM) from methionine and ATP. Tumors bearing the co-deletion of p16 and MTAP genes have been shown to be sensitive to MAT2a inhibition, making it an attractive target for treatment of MTAP-deleted cancers. A fragment-based lead generation campaign identified weak but efficient hits binding in a known allosteric site. By use of structure-guided design and systematic SAR exploration, the hits were elaborated through a merging and growing strategy into an arylquinazolinone series of potent MAT2a inhibitors. The selected in vivo tool compound 28 reduced SAM-dependent methylation events in cells and inhibited proliferation of MTAP-null cells in vitro. In vivo studies showed that 28 was able to induce antitumor response in an MTAP knockout HCT116 xenograft model.Skutterudite-type compounds based on □Co4Sb12 pnictide are promising for thermoelectric application due to their good Seebeck values and high carrier mobility. Filling the 8a voids (in the cubic space group Im3̅) with different elements (alkali, alkali earth, and rare earth) helps to reduce the thermal conductivity and thus increases the thermoelectric performance. A systematic characterization by synchrotron X-ray powder diffraction of different M-filled Co4Sb12 (M = K, Sr, La, Ce, and Yb) skutterudites was carried out under high pressure in the range ∼0-12 GPa. The isothermal equations of state (EOS) were obtained in this pressure range and the Bulk moduli (B0) were calculated for all the filled skutterudites, yielding unexpected results. A lattice expansion due to the filler elements fails in the description of the Bulk moduli. Topochemical studies of the filler site environment exhibited a slight disturbance and an increased ionic character when the filler is incorporated. The mechanical properties by means of Bulk moduli resulted in being sensitive to the presence of filler atoms inside the skutterudite voids, being affected by the covalent/ionic exchange of the Co-Sb and Sb-Sb bonds.Superoxide (O2•-) is a toxic radical, generated via the adventitious reduction of dioxygen (O2), which has been implicated in a number of human disease states. Nonheme iron enzymes, superoxide reductase (SOR) and superoxide dismutase (SOD), detoxify O2•- via reduction to afford H2O2 and disproportionation to afford O2 and H2O2, respectively. The former contains a thiolate in the coordination sphere, which has been proposed to prevent O2•- oxidation to O2. The work described herein shows that, in contrast to this, oxidized thiolate-ligated [FeIII(SMe2N4(tren)(THF)]2+ (1ox-THF) is capable of oxidizing O2•- to O2. Coordinating anions, Cl- and OAc-, are shown to inhibit dioxygen evolution, implicating an inner-sphere mechanism. Previously we showed that the reduced thiolate-ligated [FeII(SMe2N4(tren))]+ (1) is capable of reducing O2•- via a proton-dependent inner-sphere mechanism involving a transient Fe(III)-OOH intermediate. A transient ferric-superoxo intermediate, [FeIII(SMe2N4(tren))(O2)]+ (3), is detected by electronic absorption spectroscopy at -130 °C in the reaction between 1ox-THF and KO2 and shown to evolve O2 upon slight warming to -115 °C. The DFT calculated O-O (1.306 Å) and Fe-O (1.943 Å) bond lengths of 3 are typical of ferric-superoxo complexes, and the time-dependent DFT calculated electronic absorption spectrum of 3 reproduces the experimental spectrum. Selleck AZD9291 The electronic structure of 3 is shown to consist of two antiferromagnetically coupled (Jcalc = -180 cm-1) unpaired electrons, one in a superoxo π*(O-O) orbital and the other in an antibonding π*(Fe(dyz)-S(py)) orbital.We investigate the basis set requirements for the accurate calculation of core excitations and core ionizations using correlated wave functions of coupled cluster type and linear response methods for describing the excitation. When a core excitation is described as an energy difference calculated using density functional theory, the basis set can be tailored to provide a balanced description of the reference- and excited-hole states. When the core excitation process is described by coupled cluster linear response methods, however, the basis set requirements are somewhat different. A systematic study of the sensitivity of the result to the basis set parameters suggests that a relatively large set of s- and p-type basis functions in combination with a careful selection of valence and core polarization functions is required. Based on these results, we propose a hierarchical sequence of basis sets, denoted ccX-nZ (n = D, T, Q, 5) for the atoms B-Ne, which are suitable for the calculation of core excitations by the correlated wave function linear response and equation-of-motion methods.