Kjeldgaardmeyer4243

From DigitalMaine Transcription Project
Revision as of 18:09, 22 November 2024 by Kjeldgaardmeyer4243 (talk | contribs) (Created page with "It is reported that long non-coding RNA nuclear paraspeckle assembly transcript 1 (LncRNA NEAT1) is involved in the occurrence and development of various cancers. However, the...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

It is reported that long non-coding RNA nuclear paraspeckle assembly transcript 1 (LncRNA NEAT1) is involved in the occurrence and development of various cancers. However, the detailed biological function and mechanism of LncRNA NEAT1 in retinoblastoma are still unclear. So we will explore the biological function and possible mechanism of LncRNA NEAT1 in retinoblastoma.

Quantitative real-time PCR (qRT-PCR) was used to detect LncRNA NEAT1 in retinoblastoma tissues and cell lines. Cell counting kit 8, Transwell and flow cytometry were applied to explore cell proliferation, invasion and apoptosis. The target miRNAs (miR) of LncRNA NEAT1 and miR and downstream target genes were predicted using Starbase3.0 software and confirmed by double luciferase reporting test and RNA binding protein immunoprecipitation (RIP). Western Blot was applied to explore ROCK1 in cells, and tumor allogeneic experiment was applied to study the role of LncRNA NEAT1 on tumor growth.

It was found that LncRNA NEAT1 was up-regulated in retinoblastoma tissues, cells and serum, and the prognosis of patients with high expression of LNC RNA NEAT 1 was poor. Functional analysis showed that knocking down LncRNA NEAT1 could weaken proliferation and invasion, and accelerate apoptosis. Tumor allogeneic experiment showed that sh-NEAT1 injection can inhibit tumor growth. In addition, LncRNA NEAT1 inhibited proliferation and invasion, and promoted apoptosis through miR-148b-3p/ROCK1 axis.

LncRNA NEAT1 can mediate miR-148b-3p/ROCK1 axis to weaken the proliferation and invasion of retinoblastoma.

LncRNA NEAT1 can mediate miR-148b-3p/ROCK1 axis to weaken the proliferation and invasion of retinoblastoma.

Resistance development to paclitaxel (PTX) has become a major obstacle in the successful treatment of breast cancer (BC). Circular RNAs (circRNAs) have been identified as essential regulators in PTX resistance of BC. Here, we explored the precise roles of circRNA homeodomain interacting protein kinase 3 (circHIPK3, circ_0000284) in PTX resistance of BC.

The expression levels of circHIPK3, microRNA (miR)-1286, and hexokinase 2 (HK2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Ribonuclease R (RNase R) assay was used to confirm the stability of circHIPK3. Cellular localization of circHIPK3 was assessed by subcellular localization assay. The half maximal inhibitory concentration (IC

) value for PTX was measured by Cell Counting Kit-8 (CCK-8) assay. Cell colony formation, cell cycle distribution, and apoptosis were gauged by colony formation assay and flow cytometry, respectively. Animal studies were performed to evaluate the role of circHIPK3 in vivo. The diraxis.

Persistent high-risk human papillomavirus (HPV) infection is the most common cause of cervical cancer and its precursor lesions. Although prophylactic HPV vaccines have been applied in the general population for the prevention of HPV infections, no licensed therapeutic HPV vaccine is currently available to treat preexisting HPV infections or HPV-associated diseases, including cervical cancer.

The most common murine cervical cancer model used for the evaluation of the efficacy of a therapeutic HPV vaccine in preclinical studies is the ectopic model, which is established by the subcutaneous inoculation of tumor cells, such as TC-1 cells, into the flank of an animal. We have previously demonstrated the efficacy of a therapeutic HPV peptide vaccine adjuvanted with unmethylated cytosine-phosphate-guanosine oligodeoxynucleotide in the clearance of ectopic subcutaneous tumors in C57BL/6 mice after vaccination. selleck products In the current study, we established orthotopic genital tumors by injecting TC-1 cells into the vaginalsion in a mouse model of orthotopic genital cancer.

Elucidating the mechanism of gastric cancer progression is of great importance for the discovery of new therapy targets against gastric cancer. In this study, we investigated the function of Kruppel-like factor 7 (KLF7) in gastric cancer.

qPCR and Western blot were performed to determine the expression of ANTXR1 after KLF7 inhibition. CCK-8, colony formation, apoptosis analysis, cell cycle analysis and transwell assay were performed to determine KLF7 functions in cellular proliferation, migration, apoptosis and cell cycle. Tumour xenograft experiments were performed to examine cell growth in vivo.

The results showed that KLF7 was upregulated in gastric cancer. The proliferation and migration of gastric cancer cells were suppressed by depletion of KLF7. In vivo tumour progression was also attenuated following the downregulation of KLF7. Meanwhile, overexpression of KLF7 promoted the proliferation and migration of gastric cancer cells. The results of the mechanistic analysis showed that KLF7 promoted gastric carcinogenesis via upregulation of ANTXR cell adhesion molecule 1 (ANTXR1).

Therefore, this study may provide a theoretical foundation for further clinical therapy of gastric cancer.

Therefore, this study may provide a theoretical foundation for further clinical therapy of gastric cancer.

The latent involvement of MRPL13 in non-small cell lung cancer (NSCLC) remains unclear. This study aimed to explore the role of MRPL13 in NSCLC.

All analyses were performed in R software 4.0, SPSS version 23, and GraphPad Prism 8. The "limma" package was used to identify differentially expressed genes. Univariate and multivariate cox analyses were used to identify prognosis-related genes. A549 and H1299 lung cancer cell lines were selected for phenotypic experiments.

The high level of MRPL13 was correlated with poor T classification and overall survival. In vitro experiments showed that MRPL13 was highly expressed in NSCLC tissue and cell lines. MRPL13 knockdown inhibited the proliferation of lung cancer A549 and H1299 cell lines, which was further validated by in vivo experiment. Moreover, GSEA analysis suggested that the pathway of MYC target, PI3K/AKT/mTOR/ signaling, oxidative phosphorylation, and G2/M checkpoints may be the potential pathway where MRPL13 was involved. Meanwhile, MRPL13 demonstrated a negative correlation with M1 macrophage, CD8+ T cells, and CD4+ T cells, making it an underlying immunotherapy target of NSCLC.

MRPL13 may promote the proliferation of NSCLC cells and serve as an independent tumor marker and an emerging therapeutic target.

MRPL13 may promote the proliferation of NSCLC cells and serve as an independent tumor marker and an emerging therapeutic target.