Goodwinwebb3677

From DigitalMaine Transcription Project
Jump to: navigation, search

42 GPa which is 96.9% of the v-CF. Thus, the CFRP recycling process using SDS not only results in r-CF with good mechanical and physical properties, but also increases recycling efficiency by reducing the time.In the U.S., about 27 million metric tons of municipal solid waste are used as fuel in Waste-to-Energy (WTE) power plants, generating about seven million tons of mixed bottom ash and fly ash (combined ash) annually, which are disposed of in landfills after metal separation. This study assessed the effect of using combined ash as a substitute of mined stone aggregates on the mechanical properties and leachability of cement mortar and concrete. The as-received combined ash was separated into three fractions fine ( less then 2 mm), medium (2-9.5 mm), and coarse (9.5-25 mm). The substitution of up to 100% of stone aggregate by the coarse and medium fractions of combined ash produced concrete with compressive strength exceeding 28 MPa after 28 days of curing. Similar results were obtained when the fine combined ash was used as a sand substitute, at 10 wt%, in mortar. The concrete specimens were subjected to several days of curing and mechanical testing. The results were comparable to the properties of commercial concrete products. The mechanical test results were supplemented by XRD and SEM analysis, and leachability tests by EPA Method 1313 showed that the optimal concrete products effectively immobilized the heavy metals in the combined ash.Landfilling is the primary method used for municipal solid waste (MSW) disposal. To design, optimize, and manage landfills with a life span of several decades, a deeper understanding of long-term MSW behaviors is necessary and worthwhile. These behaviors should be modeled using approaches that account for coupled processes so as to capture the evolutionary mechanisms that are mainly dominated by biochemical, mechanical, hydraulic, and thermal processes, as well as the complex interactions among them. Many mathematical models have been developed over the past three decades to address this issue. However, most of them only emphasize some of these processes, with only few models accounting for all the processes. In this review, we present a comprehensive overview of the mathematical and numerical formulations of this coupled problem. Each process occurring in landfills is interpreted in detail using different sub-models and the corresponding parameter values. Then, the existing coupled models for MSW are reviewed, and the challenges and perspectives related to the modeling of the long-term behaviors of MSW are highlighted. We conclude that more reliable constitutive formulations based not only on well-designed laboratory tests but also on field tests are necessary to improve the modeling of MSW behaviors in future.Electronic waste (e-waste) with an annual growth rate of 3-5% is one of the fastest-growing waste streams. The unregulated accumulation and improper recycling can cause grave hazards to human beings and the environment. On the contrary, e-waste can be considered as a secondary source of metals and energy due to its high metal content and polymeric material. Thus, the present study demonstrates technology for the metallic fraction recovery and the production of valuable gases from e-waste. The process involves pyrolysis at a temperature range of 200 °C-600 °C in a fixed bed setup for 10-60 min. Under optimized operating conditions, 35 wt% combustible gases and 60 wt% solid product were obtained at a pyrolysis temperature of 400 °C in 20 min. The gaseous product consisted of CH4, H2, CO and CO2, having the heating value 28 MJ/kg whereas, the solid product is a mixture of metals and other solid residue material. Treatment of the solid product using an ultrasonication process resulted in around 90 wt% recovery of metallic fraction, thereby leaving behind solid residue. Moreover, the transfer of precious metals (Au, Ag, Pd and Pt) was nearly 100% to the metallic fraction. selleck inhibitor This process combines mild temperature pyrolysis and ultrasonication process to provide a solution for efficient management of e-waste, metallic fraction recovery and valuable gases production.As an alternative to conventional plastic-waste treatments, herein, we report a pyrolytic plastic-recovery process in which diverse compounds and materials are recovered from the pyrolysis oil obtained from the plastic waste. Distillation of the pyrolysis oil led to a bitumen and a distilled fraction. The composition of the bitumen, as determined by saturate, aromatic, resin, and asphaltene (S.A.R.A.) analysis and corroborated by Fourier-transform infrared (FTIR) spectroscopy, was found to principally contain aromatics (55.05 wt%) and saturates (33.41 wt%), and has great potential as a modifier for bitumen mixtures by decreasing the viscosities or softening points of final products. The distilled fraction was characterised and compared to pyrolysis oil in terms of its physicochemical properties and composition. Analysis by gas-chromatography/mass-spectrometry (GC-MS) revealed high levels of aromatics, namely styrene, benzene, toluene, ethylbenzene, and α-methylstyrene, which are potentially recoverable base compounds for industrial use. With this in mind, the distillate was subjected to various processes, including aromatic extraction with sulfolane and subsequent fractional distillation to recover the principal compounds in the various GC-MS fractions. Fraction 1 was found to be rich in ethylbenzene and toluene, while fraction 2 contained 73.26 wt% styrene and was used to synthesise recycled polystyrene (PS), whose yield and molecular weight (Mw) were optimised by adjusting the initiator concentration, temperature, and time. The optimised recycled PS was characterised to provide a yield of 77.64% and a Mw higher than 53,000 g/mol; this recycled PS exhibited similar thermal properties to those of conventional PS prepared using petrochemical sources.The preparation of lightweight aggregate (LWA) by high-temperature sintering is a promising method for recycling solid waste safely, especially for solidifying heavy metals effectively. The main aim of this research was to systematically evaluate the effects of the flux components on LWA, including Na2O, MgO, CaO, and Fe2O3. The physical properties and chromium solidification mechanism of LWA were characterized and analyzed. The results showed that the addition of Na facilitated LWA preparation and Cr solidification, whereas Ca, Mg, and Fe were deleterious to some extent. Further analysis indicated that increasing the Fe2O3 content was not conducive to the reduction of Cr because its decomposition reaction creates an oxygen-rich environment. The results of this research could provide a meaningful guide for regulating the composition of raw materials for the production of LWA to treat industrial Cr-containing solid waste.