Gottliebhodges5769
large differences on the forewing shape tree vs. molecular tree), and there was no interspecific phylogenetic information of the hindwing shape tree vs. molecular tree. Conclusion The dragonfly wing shape characteristics are closely related to its migration ability. Species with strong ability to migrate have the forewing shape that is longer and narrower, and have larger anal region, whereas the species that prefer short-distance hovering or standing still for a long time have forewing that are wider and shorter, and the anal region is smaller. Integrating morphological and molecular data to evaluate the relationship among dragonfly species shows there is some interspecific phylogenetic information in the forewing shape and none in the hindwing shape. The forewing and hindwing of dragonflies exhibit an inconsistent pattern of morphological changes in different species. ©2020 Huang et al.This article is a presentation of taxonomic diversity of the orchid genus Cyrtochilum in Northwestern South America. The morphological characteristics of over 90 species occurring in northern Peru, Ecuador, Colombia and Venezuela are presented together with illustrations of their floral segments. Information about the distribution of each taxon is provided. Ten morphologically consistent groups have been delineated to facilitate identification of Cyrtochilum representatives in the studied area. Keys for determination of species within each group are provided. Almonertinib molecular weight Seven new species of Cyrtochilum are described and one new combination is proposed. © 2020 Szlachetko and Kolanowska.Background Head and neck squamous cell carcinoma (HNSCC) is a malignant tumor with a strong tendency for metastasis and recurrence. Finding effective biomarkers for the early diagnosis of HNSCC is critical for the early treatment and prognosis of patients. Methods RNA sequencing data including long non-coding RNAs (lncRNAs), messenger RNA (mRNAs) and microRNAs (miRNAs) of 141 HNSCC and 44 adjacent normal tissues were obtained from the TCGA. Differentially expressed genes were analyzed using the R package DESeq. GO terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. A competing endogenous RNAs (ceRNA) network was constructed. The most differentially expressed genes in the main ceRNA network were chosen for nasopharyngeal carcinoma (NPC) cell lines and NPEC2 Bmi-1 cell line verification. A receiver operating characteristic (ROC) curve was constructed for 141 specimens of HNSCC tissues from 44 control samples. Results In our study, 79 HNSCC-associated abnormally expressed lncRNAs , 86 abnormally expressed miRNAs and 324 abnormally expressed mRNAs were identified. The public microarray results showed that LINC00958 and HOXC13-AS expression levels were upregulated in HNSCC tissues compared with the adjacent normal tissues in this study (p less then 0.0001). LINC00958 and HOXC13-AS expression levels in NPC cell lines were higher than those in the NPEC2 Bmi-1 cell line (p less then 0.05). The results showed that the area under the ROC curve (AUC) of LINC00958 reached up to 0.906 at a cutoff value of 7.96, with a sensitivity and specificity of 80.85% and 90.91%, respectively. The AUC of HOXC13-AS reached up to 0.898 at a cutoff value of 0.695, with sensitivity and specificity values of 86.23% and 83.78%, respectively. Conclusion The current study indicates that LINC00958 and HOXC13-AS are new candidate diagnostic biomarkers for HNSCC patients. ©2020 Xiong et al.Background People with chronic neck pain have impaired proprioception (i.e., sense of neck position). It is unclear whether this impairment involves disruptions to the proprioceptive representation in the brain, peripheral factors, or both. Implicit motor imagery tasks, namely left/right judgements of body parts, assess the integrity of the proprioceptive represention. Previous studies evaluating left/right neck judgements in people with neck pain are conflicting. We conducted a large online study to comprehensively address whether people with neck pain have altered implicit motor imagery performance. Methods People with and without neck pain completed online left/right neck judgement tasks followed by a left/right hand judgement task (control). Participants judged whether the person in the image had their head rotated to their left or right side (neck task) or whether the image was of a left hand or a right hand (hand task). Participants were grouped on neck pain status (no pain; less then 3 months-acute; ≥es, regardless of history or location of pain (p less then 0.001 for both); people with no pain were more accurate and faster than people with bilateral neck pain (p = 0.001, p = 0.015) and were faster than those with left-sided neck pain (p = 0.021); people with right-sided neck pain were more accurate than people with bilateral neck pain (p = 0.018). Lastly, there was a significant interaction between neck image and side of neck pain people with right-sided neck pain were more accurate at identifying right-sided neck turning images than people with left-sided neck pain (p = 0.008), but no different for left-sided neck turning images (p = 0.62). Conclusions There is evidence of impaired implicit motor imagery performance in people with chronic neck pain, which may suggest disruptions to proprioceptive representation of the neck. These disruptions seem specific to the neck (performance on hand images intact) but non-specific to the exact location of neck pain. © 2020 Wallwork et al.Background Parkinson's disease (PD) leads to several changes in motor control, many of them related to informational or cognitive overload. The aim of this study was to investigate the influence of knowledge and intention on the postural control performance and on the coupling between visual information and body sway in people with and without PD standing upright. Methods Participants were 21 people with PD (62.1 ± 7.2 years), stages 1 and 2 (Hoehn & Yahr scale), under dopaminergic medication, and 21 people in the control group (62.3 ± 7.1 years). Participants stood upright inside a moving room, performing seven trials of 60 s. In the first trial, the room remained motionless. In the others, the room oscillated at 0.2 Hz in the anterior-posterior direction in the first block of three trials, the participants were not informed about the visual manipulation; in the second block of three trials, participants were informed about the room movement and asked to resist the visual influence. An OPTOTRAK system recorded the moving room displacement and the participants' sway.