Ehlerskarlsson9144

From DigitalMaine Transcription Project
Jump to: navigation, search

Herein, a uniform spherical shaped Gd(III) doped Yb2O3 (Gd@Yb2O3) nanoparticles (NPs) was successfully synthesized via hydrothermal method for electrochemical detection of H2O2. The calcination effect and porosity of the materials well elaborated in the present work. The optical properties, size, morphological, thermal, sensing, surface and crystalline properties of synthesized materials were examined by several techniques. The enhanced electrocatalytic performance of Gd@Yb2O3 make the present sensor excellent towards the determination of H2O2.The anodic and cathodic peak current increased regularly with addition of H2O2 solution. The electrode coating surface was stable even after a number of electrochemical cycles and have high limit of detection (51 nM). Moreover, the present sensor was successfully employed for detection of H2O2 in real samples.Cynarin is one of the biologically active functional components present a wide range of pharmacological applications. Herein, we reported the fabrication and surface properties investigation of a new highly sensitive electrochemical sensor for the detection of cynarin. The electrochemical sensors were fabricated in several steps; the first being the synthesis of bi-thiophene derivatives-based monomers 3,3'-bithiophen (M1); 2-methoxy-5-carbaldehyde-[3,3'-bithiophene] (M2) and 2-((2-methoxy-[3,3'-bithiophen]-5-yl)methylene)malononitrile) (M3) followed by electrochemical polymerization on a glassy carbon electrode after which multi-walled carbon nanotube (MWCNT) and gold nanoparticles (GNP's) were electrodeposited layer-by-layer on the polymer coating to obtain multilayer electrochemical sensors. The morphological properties of the formed polymers were evaluated using SEM analysis and the apparent contact angles to preview the changes in surface properties after the functionalization of monomers and therefore their effects on the detection of cynarin. N6F11 activator Analytical parameters such as the accumulation time and pH of the PBS solution which influence the sensitivity of the electrochemical sensors were optimized. Under the optimal conditions the GCE/P3/MWCNT/GNP's showed a wide range of analyte concentrations (1 to 100 μM and 0.01 to 1 μM) and detection limit of 0.0095 using pulse differential voltammetry. In addition, the electrochemical sensors showed good reproducibility, stability and selectivity and they were used successfully for the determination of cynarin in real solutions.One of the major challenges in effective cancer chemotherapy is the severe systemic cytotoxicities of anticancer drugs on healthy tissues. The present study reports chemically modified polymeric nanocapsules (NCs) encapsulating combination of chemotherapeutic drugs Docetaxel (DTX) and Quercetin (QU) for its active targeting to prostate cancer (PCa). The active targeting was achieved by conjugating Luteinizing-hormone-releasing hormone (LHRH) ligand to poly-lactide-co-glycolide (PLGA) using polyethylene glycol (PEG) as a spacer. The structure of the conjugates was characterized and confirmed using 1H NMR and ATR-FTIR. The drug encapsulated NCs showed a homogenous size distribution with their size ranging between 120 and 150 nm, and exhibited a negative zeta potential in the range of -20 to -40 mV. The in vitro release studies highlighted the sustained drug release pattern from the respective NCs; while the PEG coating to polymeric NCs provided serum stability to the NCs. The in vitro biological evaluation of the NCs was conducted using PC-3 and LNCaP cell lines. The results of the cellular uptake studies showed a significantly higher untake of the LHRH targeted NCs, while the LHRH-targeted-PEGylated DTX QU NCs exhibited higher caspase-3 activity. The cell viability assay results showed the enhanced cell inhibition activity of the combinatorial DTX QU when compared to individual DTX. Further, higher cell cytotoxicity was achieved by LHRH-targeted DTX QU NCs as compared to their free-form or non-targeted NCs. Finally, the results of in vivo tumor localization and in vivo antitumor activity studies complimented and upheld the in vitro results, demonstrating the beneficial role of PLGA-PEG-LHRH NCs encapsulating combination of DTX and QU in combating prostate cancer (PCa).Biomaterials that can control the behaviour of stem cells play a major role in regenerative medicine and tissue engineering. We previously showed that poly(epsilon)caprolactone (PCL) films functionalized with adhesive peptides containing sequences of both cell binding domain (RGD) and synergistic site (PHSRN) of the fibronectin (pFibro) enhanced the osteoblastic commitment of C3H10T1/2 mesenchymal progenitor cells (C3H10T1/2 cells) induced by soluble BMP-9 or its derived peptide SpBMP-9. Here, the effect of PCL films functionalized with pFibro and/or SpBMP-9 or its negative peptide NSpBMP-9 on adhesion and intracellular signalling of C3H10T1/2 cells was determined. The differentiation of adherent C3H10T1/2 cells and MC3T3-E1 preosteoblasts into osteoblasts was also analysed with or without IGF-2, since this growth factor can favour the osteoblastic differentiation induced by BMP-9. We found that pFibro and SpBMP-9 co-functionalization on PCL films promoted the adhesion of C3H10T1/2 cells with well-organized fBMP-9 could be most useful for developing scaffolds with both osseointegrative and osteoinductive properties for bone application and tissue engineering strategy when combined with IGF-2 in serum free medium.Nanotechnology development provides new strategies to improve different treatment modalities by integration of multiple molecules in a single multifunctional nanoparticle. In this scenario, we highlight silver nanoparticles (AgNPs) favorable optical properties such as absorption and emission of light in the visible region of the spectrum. This allows its synergic combination with the photosensitizer molecule methylene blue (MB) in order to improve outcomes in photodynamic-based therapies. Therefore, we engineered here a new multifunctional nanostructured system based in the synthesis of pluronic-based AgNP/MB nanohybrids inspired by the concept of supramolecular chemistry. Silver reduction in water and Pluronic F127 aqueous solutions in the presence of hydrogen peroxide as etching agent at several concentrations induced the formation of anisotropic forms of AgNPs. Electronic absorption and TEM studies demonstrated a greater kinetic and morphological control for Pluronic synthetized NPs. The smart design of the proposed nanohybrids favored the enhancement of MB photophysical properties such as fluorescence emission and singlet oxygen production due a synergic action from resonant coupling between AgNP magnetic field and MB molecules.