Kejserfry1243

From DigitalMaine Transcription Project
Jump to: navigation, search

Muscle coordination is important for rational and effective planning of therapeutic and exercise interventions using equipment that mimics functional movements. Our study was the first to assess muscle coordination during flywheel (FW) squats.

Time-of-peak electromyographic activation order was assessed separately for 8, 4, and 3 leg muscles under four FW loads. A sequential rank agreement permutations tests (SRA) were conducted to assess activation order and Kendall's tau was used to assess the concordance of activation order across subjects, loads and expected order of activation.

SRA revealed a latent muscle activation order at loads 0.05, 0.075, and 0.1, but not at 0.025 kg·m

. Kendall's tau showed moderate-to-strong concordance between the expected (proximal-to-distal) and the observed muscle activation order only at a load 0.025 kg·m

, regardless of the number of muscles analyzed. Muscle activation order was highly concordant between loads 0.05, 0.075, and 0.1 kg·m

.

The results show a specific role of each muscle during the FW squat that is load-dependent. While the lowest load follows the proximal-to-distal principle of muscle activation, higher loads lead to a reorganization of the underlying muscle coordination mechanisms. They require a specific and stable muscle coordination pattern that is not proximal-to-distal.

The results show a specific role of each muscle during the FW squat that is load-dependent. While the lowest load follows the proximal-to-distal principle of muscle activation, higher loads lead to a reorganization of the underlying muscle coordination mechanisms. They require a specific and stable muscle coordination pattern that is not proximal-to-distal.Overhang provides a simple but effective way of coupling (sub)structures, which has been widely adopted in the applications of optomechanics, electromechanics, mass sensing resonators, etc. Despite its simplicity, an overhanging structure demonstrates rich and complex dynamics such as mode splitting, localization and eigenfrequency veering. When an eigenfrequency veering occurs, two eigenfrequencies are very close to each other, and the error associated with the numerical discretization procedure can lead to wrong and unphysical computational results. A method of computing the eigenfrequency of two overhanging beams, which involves no numerical discretization procedure, is analytically derived. Based on the method, the mode localization and eigenfrequency veering of the overhanging beams are systematically studied and their variation patterns are summarized. The effects of the overhang geometry and beam mechanical properties on the eigenfrequency veering are also identified.Error-prone DNA repair pathways promote genomic instability which leads to the onset of cancer hallmarks by progressive genetic aberrations in tumor cells. The molecular mechanisms which foster this process remain mostly undefined, and breakthrough advancements are eagerly awaited. In this context, the alternative non-homologous end joining (Alt-NHEJ) pathway is considered a leading actor. Indeed, there is experimental evidence that up-regulation of major Alt-NHEJ components, such as LIG3, PolQ, and PARP1, occurs in different tumors, where they are often associated with disease progression and drug resistance. Moreover, the Alt-NHEJ addiction of cancer cells provides a promising target to be exploited by synthetic lethality approaches for the use of DNA damage response (DDR) inhibitors and even as a sensitizer to checkpoint-inhibitors immunotherapy by increasing the mutational load. In this review, we discuss recent findings highlighting the role of Alt-NHEJ as a promoter of genomic instability and, therefore, as new cancer's Achilles' heel to be therapeutically exploited in precision oncology.We propose a novel framework to describe the time-evolution of dilute classical and quantum gases, initially out of equilibrium and with spatial inhomogeneities, towards equilibrium. Briefly, we divide the system into small cells and consider the local equilibrium hypothesis. We subsequently define a global functional that is the sum of cell H-functionals. Each cell functional recovers the corresponding Maxwell-Boltzmann, Fermi-Dirac, or Bose-Einstein distribution function, depending on the classical or quantum nature of the gas. The time-evolution of the system is described by the relationship dH/dt≤0, and the equality condition occurs if the system is in the equilibrium state. Via the variational method, proof of the previous relationship, which might be an extension of the H-theorem for inhomogeneous systems, is presented for both classical and quantum gases. Furthermore, the H-functionals are in agreement with the correspondence principle. We discuss how the H-functionals can be identified with the system's entropy and analyze the relaxation processes of out-of-equilibrium systems.Osteoporosis is a common metabolic disorder diagnosed by lower bone density and higher risk of fracture. Fragility fractures because of osteoporosis are associated with high mortality rate. Deep understanding of fracture healing in osteoporosis is important for successful treatment. Therefore, the FDA approved the use of small and large animal models for preclinical testing. This study investigated the clinical relevance of a fracture defect model in the iliac crest of the osteoporotic sheep model and its several advantages over other models. The osteoporosis was achieved using ovariectomy (OVX) in combination with diet deficiency (OVXD) and steroid administration (OVXDS). Fluorochrome was injected to examine the rate of bone remodelling and bone mineralization. The defect areas were collected and embedded in paraffin and polymethyl metha acrylate (PMMA) for histological staining. BisindolylmaleimideIX OVXDS showed significantly lower bone mineral density (BMD) and bone mineral content (BMC) at all time points. Furthermore, variations in healing patterns were noticed, while the control, OVX and OVXD showed complete healing after 8 months. Bone quality was affected mostly in the OVXDS group showing irregular trabecular network, lower cortical bone thickness and higher cartilaginous tissue at 8 months. The mineral deposition rate showed a declining pattern in the control, OVX, and OVXD from 5 months to 8 months. One the contrary, the OVXDS group showed an incremental pattern from 5 months to 8 months. The defect zone in osteoporotic animals showed impaired healing and the control showed complete healing after 8 months. This unique established model serves as a dual-purpose model and has several advantages no intraoperative and postoperative complications, no need for fixation methods for biomaterial testing, and reduction in animal numbers, which comply with 3R principles by using the same animal at two different time points.