Mcgregormccarthy5345

From DigitalMaine Transcription Project
Jump to: navigation, search

Well-studied structural motifs in Rad23 have been shown to bind polyubiquitin chains and the proteasome. These domains are predicted to enable Rad23 to transport polyubiquitylated (polyUb) substrates to the proteasome (Chen and Madura, 2002 [1]). The validation of this model, however, has been hindered by the lack of specific physiological substrates of Rad23. We report here that Rad23 can bind Ho-endonuclease (Ho-endo), a nuclear protein that initiates mating-type switching in Saccharomyces cerevisiae. We observed that the degradation of Ho-endo required export from the nucleus, in agreement with a previous report (Kaplun et al., 2003 [2]), and suggests that Rad23 can traffic proteins out of the nucleus. In agreement, the subcellular distribution of Rad23 is noticeably altered in genetic mutants that disrupt nucleocytoplasmic trafficking. Significantly, the location of Rad23 affected its binding to polyUb substrates. Mutations in nuclear export stabilized substrates, and caused accumulation in the nucleus. Importantly, Rad23 also accumulated in the nucleus in an export mutant, and bound to higher levels of polyUb proteins. In contrast, Rad23 is localized in the cytosol in rna1-1, a nucleocytoplasmic transport mutant, and it forms reduced binding to polyUb substrates. These and other studies indicate that substrates that are conjugated to polyubiquitin chains in the nucleus may rely on an export-dependent mechanism to be degraded by the proteasome. The evolutionary conservation of Rad23 and similar substrate-trafficking proteins predicts an important role for export in the turnover of nuclear proteins. Reactivation of protein aggregates plays a fundamental role in numerous situations, including essential cellular processes, hematological and neurological disorders, and biotechnological applications. The molecular details of the chaperone systems involved are known to a great extent but how the overall reactivation process is achieved has remained unclear. Here, we quantified reactivation over time through a predictive mechanistic model and identified the key parameters that control the overall dynamics. We performed new targeted experiments and analyzed classical data, covering multiple types of non-ordered aggregates, chaperone combinations, and experimental conditions. We found that, irrespective of the behavior observed, the balance of surface disaggregation and refolding in solution universally determines the reactivation dynamics, which is broadly described by two characteristic times. This characterization makes it possible to use activity measurements to accurately infer the underlying loss of aggregated protein and to quantify, for the first time, the refolding rates of the soluble intermediates. BACKGROUND Previous structural analyses showed that human α1,6-fucosyltransferase, FUT8 contains a catalytic domain along with two additional domains, N-terminal α-helical domain and C-terminal Src homology 3 domain, but these domains are unique to FUT8 among glycosyltransferases. The role that these domains play in formation of the active form of FUT8 has not been investigated. This study reports on attempts to determine the involvement of these domains in the functions of FUT8. METHODS Based on molecular modeling, the domain mutants were constructed by truncation and site-directed mutagenesis, and were heterologously expressed in Sf21 or COS-1 cells. The mutants were analyzed by SDS-PAGE and assayed for enzymatic activity. In vivo cross-linking experiments by introducing disulfide bonds were also carried out to examine the orientation of the domains in the molecular assembly. RESULTS Mutagenesis and molecular modeling findings suggest that human FUT8 potentially forms homodimer in vivo via intermolecular hydrophobic interactions involving α-helical domains. Truncation or site-directed mutagenesis findings indicated that α-helical and SH3 domains are all required for enzymatic activity. Pomalidomide in vitro In addition, in vivo cross-linking experiments clearly indicated that the SH3 domain located in close proximity to the α-helical domain in an intermolecular manner. CONCLUSIONS α-Helical and SH3 domains are required for a fully active enzyme, and are also involved in homophilic dimerization, which probably results in the formation of the active form of human FUT8. GENERAL SIGNIFICANCE α-Helical and SH3 domains, which are not commonly found in glycosyltransferases, play roles in the formation of the functional quaternary structure of human FUT8. Alzheimer's disease (AD) is a progressively neurodegenerative disorder, which seriously affects human health and cannot be stopped by current treatments. Type 2 diabetes mellitus (T2DM) is a risk factor for AD. Our recent studies reported the neuroprotective effects of a GLP-1/GIP/Glucagon receptor triagonist (Triagonist), a novel unimolecular anti-diabetic drug, in cognitive and pathological improvements of 3xTg-AD mice. However, the detailed electrophysiological and molecular mechanisms underlying neuroprotection remain unexplored. The present study investigated the underlying electrophysiological and molecular mechanisms further by using whole-cell patch clamp techniques. Our results revealed that chronic Triagonist treatment effectively reduced working memory and reference memory errors of 3xTg-AD mice in a radial maze test. In addition, the Triagonist increased spontaneous excitatory synaptic activities, differentially modulated voltage- and chemically-gated Ca2+ flux, and reduced the over-excitation of pyramidal neurons in hippocampal slices of 3xTg-AD mice. In addition, chronic Triagonist treatment also up-regulated the expression levels of synaptophysin and PSD-95 in the hippocampus of 3xTg-AD mice. These results indicate that the Triagonist could improve memory formation, as well as synaptic transmission, Ca2+ balance, and neuronal excitability in 3xTg-AD mice. These neuroprotective effects of Triagonist may be involved in the up-regulation of synaptophysin and PSD-95. Therefore, the study suggests that multi-receptor agonists might be a novel therapeutic strategy for the treatment of AD. BACKGROUND Olive oil intake has been associated with lower risk of cardiovascular disease (CVD) in Mediterranean populations, but little is known about these associations in the U.S population. OBJECTIVES To examine whether olive oil intake is associated with total CVD, coronary heart disease (CHD) and stroke risk. METHODS We included 61,181 women from the Nurses' Health Study (1990-2014) and 31,797 men from the Health Professionals Follow-up Study (1990-2014) who were free of cancer, heart disease, and stroke at baseline. Diet was assessed using food frequency questionnaires at baseline and then every 4 years. Cox proportional hazards regressions were used to estimate hazard ratios (HR) and 95% confidence intervals (CI). RESULTS During 24 years of follow-up, we documented 9,797 incident cases of CVD, including 6,034 CHD cases and 3,802 stroke cases. After adjusting for major diet and lifestyle factors, compared with non-consumers, those with higher olive oil intake (>1/2 tablespoon/d or >7g/d) had 14% lower risk of CVD [pooled HR (95% CI) 0.