Sharmabirk5246

From DigitalMaine Transcription Project
Revision as of 22:44, 20 October 2024 by Sharmabirk5246 (talk | contribs) (Created page with "Bacterial resistance to antibiotics is a major concern worldwide, leading to an extensive search for alternative drugs. Promising candidates are antimicrobial peptides (AMPs),...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Bacterial resistance to antibiotics is a major concern worldwide, leading to an extensive search for alternative drugs. Promising candidates are antimicrobial peptides (AMPs), innate immunity molecules, shown to be highly efficient against multidrug resistant bacteria. Therefore, it is essential to study bacterial resistance mechanisms against them. For that purpose, we used experimental evolution, and isolated a Salmonella enterica serovar typhimurium-resistant line to the AMP 4DK5L7. This AMP displayed promising features including widespread activity against Gram-negative bacteria and protection from proteolytic degradation. However, the resistance that evolved in the isolated strain was particularly high. Whole genome sequencing revealed that five spontaneous mutations had evolved. Of these, three are novel in the context of acquired AMP resistance. Two mutations are related to the AcrAB-TolC multidrug efflux pump. One occurred in AcrB, the substrate-binding domain of the system, and the second in RamR, a pach, Nuri, Schmidt, Danin, Ferrera, Savidor, Gerlach and Shai.[This corrects the article DOI 10.3389/fendo.2019.00651.]. Copyright © 2020 Itabashi, Mizukami, Osonoi, Takahashi, Kudo, Wada, Inaba, Danyang, Uchida, Umetsu, Igawa, Ogasawara, Ryuzaki, Komeda, Ishibashi, Yagihashi and Nakaji.Purpose Sarcopenia is a geriatric syndrome, and it is closely related to the prevalence of type 2 diabetes mellitus (T2DM). Until now, the diagnosis of sarcopenia requires Dual Energy X-ray Absorptiometry (DXA) scanning. This study aims to make risk assessment of sarcopenia with support vector machine (SVM) and random forest (RF) when DXA is not available. Methods Firstly, we recruited 132 patients aged over 65 and diagnosed with T2DM in Changchun, China. Clinical data were collected for predicting sarcopenia. Secondly, we selected 3, 5, and 7 features out of over 40 features of patient's data with backward selection, respectively, to train SVM and RF classification models and regression models. Finally, to evaluate the performance of the models, we performed leave one out and 5-fold cross validation. Selleck ZEN-3694 Results When training the model with 5 features, the sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) were favorable, and it was better than the models trained with 3 features and 7 features. Area under the receiver operating characteristic (ROC) curve (AUC) were over 0.7, and the mean AUC of SVM models was higher than that of RF. Conclusions Using SVM and RF to make risk assessment of sarcopenia in the elderly is an option in clinical setting. Only 5 features are needed to input into the software to run the algorithm for a primary assessment. It cannot replace DXA to diagnose sarcopenia, but is a good tool to evaluate sarcopenia. Copyright © 2020 Cui, Gang, Gao, Wang, Xiao, Li, Li, Ning and Wang.Background Consistent evidence have demonstrated that patients with primary aldosteronism (PA) have higher risk of cardiovascular events to patients with essential hypertension (EH). Whether the long-term risk of mortality for PA patients is higher than EH patients is unclear. We aim to compare the long-term mortality of patients with PA to patients with EH. Methods We searched PubMed, Embase, and Cochrane Central Register of Controlled Trials for eligible studies from inception to 14 Nov 2018. We combined the relative risks (RR) of each included study by random-effect model. The amount of between study heterogeneity was measured by the I 2 statistic. Results We totally included six studies with cohort design, including 3,039 PA and 45,495 EH patients. The pooled RRs for patients with PA were 1.97 (95%CI 1.33, 2.91; P = 0.0007) for a follow-up of 3 years, 0.96 (95%CI 0.75, 1.23; P = 0.76) for 5 years, 0.86 (95%CI 0.51, 1.46) for 7.5 years, and 0.95 (95%CI 0.61, 1.48; P = 0.58) for 10 years. For patients with aldosterone-producing adenomas (APA), evidence of lower risk of long-term mortality was observed. Our sensitivity analysis suggested our results were stable. Conclusions Current evidence supported a higher risk of mortality for patients with primary aldosteronism at 3 years compared to patients with essential hypertension, however this risk no longer sustains as the follow-up time increased to 5 or more years. Patients with aldosterone-producing adenomas may have lower long-term mortality rate than patients with essential hypertension due to the better recovery of adrenalectomy. Copyright © 2020 Meng, Dai, Huang, Xu, Zhang, Zheng and Liu.Non-shivering thermogenesis in mammalian brown adipose tissue is a powerful mechanism to defend normothermia in cold climates. To minimize the loss of chemical energy, the central functional component, mitochondrial uncoupling protein 1, UCP1, must be tightly regulated. The canonical pathway of UCP1 activation includes lipolytic release of free fatty acids in response to an adrenergic signal. Activating fatty acids overcome constitutive inhibition of UCP1 by the di- and triphosphate forms of purine nucleotides, i.e., ATP, ADP, GTP, and GDP. Cellular concentrations of inhibitory, free nucleotides are subject to significant, adrenergically induced alterations. The regulatory components involved may constitute novel drug targets to manipulate brown fat thermogenesis and thereby organismic energy balance. We here review evidence for and against a dominant role of nucleotides in thermogenic control, describe conceptual routes to endogenously and pharmacologically alter free nucleotide pool size, speculate on a signaling role of degradation products released from active brown fat, and highlight gaps in our understanding of signaling and metabolic pathways involved. Copyright © 2020 Bast-Habersbrunner and Fromme.The structurally-related peptides, gastrin and cholecystokinin (CCK), were originally discovered as humoral stimulants of gastric acid secretion and pancreatic enzyme release, respectively. With the aid of methodological advances in biochemistry, immunochemistry, and molecular biology in the past several decades, our concept of gastrin and CCK as simple gastrointestinal hormones has changed considerably. Extensive in vitro and in vivo studies have shown that gastrin and CCK play important roles in several cellular processes including maintenance of gastric mucosa and pancreatic islet integrity, neurogenesis, and neoplastic transformation. Indeed, gastrin and CCK, as well as their receptors, are expressed in a variety of tumor cell lines, animal models, and human samples, and might contribute to certain carcinogenesis. In this review, we will briefly introduce the gastrin and CCK system and highlight the effects of gastrin and CCK in the regulation of cell proliferation and apoptosis in both normal and abnormal conditions.