Higginshauge3358

From DigitalMaine Transcription Project
Revision as of 22:32, 21 November 2024 by Higginshauge3358 (talk | contribs) (Created page with "In this paper we focus on the structural, electronic, and magnetic properties of Ni tetra-phenyl-porphyrins (NiTPP) grown on top of Fe(001)-p(1 × 1)O. Ordered thin films of m...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

In this paper we focus on the structural, electronic, and magnetic properties of Ni tetra-phenyl-porphyrins (NiTPP) grown on top of Fe(001)-p(1 × 1)O. Ordered thin films of metal TPP molecules are potentially interesting for organic electronic and spintronic applications, especially when they are coupled to a ferromagnetic substrate. Unfortunately, porphyrin layers deposited on top of ferromagnetic substrates do not generally show long-range order. In this work, we provide evidence of an ordered disposition of the organic film above the iron surface and we prove that the thin layer of iron oxide decouples the molecules from the substrate, thus preserving the molecular electronic features, especially the HOMO-LUMO gap, even when just a few organic layers are deposited. The effect of the exposure to molecular oxygen is also investigated and an increased robustness against oxidation with respect to the bare substrate is detected. Finally, we present our results for the magnetic analysis performed by spin resolved spectroscopy, finding a null magnetic coupling between the molecules and the substrate.The metallophyte Imperata cylindrica inhabits copper (Cu) polluted soils in large areas from Central Chile. Here, we subjected clonal vegetative plantlets to 300 mg Cu kg-1 of substrate for 21 days to identify the main molecular pathways involved in the response to Cu stress. Transcriptomic analyses were performed for shoots and roots, with and without Cu supply. RNA-Seq and de novo transcriptome assembly were performed to identify the gene response associated with molecular mechanisms of Cu tolerance in I. cylindrica. De novo transcriptome revealed a total of 200,521 transcripts (1777 bp) comprising ~91% complete ultra-conserved genes in the eukaryote and Plantae database. The differentially expressed genes (DEGs) in roots were 7386, with 3558 of them being up-regulated and the other 3828 down-regulated. The transcriptome response in shoots was significantly less, showing only 13 up-regulated and 23 down-regulated genes. Interestingly, DEGs mainly related with actin and cytoskeleton formation, and to a minor degree, some DEGs associated with metal transporters and superoxide dismutase activity in root tissues were found. These transcriptomic results suggest that cytoskeleton could be acting as a mechanism of Cu-binding in the root, resulting in a high Cu tolerance response in this metallophyte, which deserve to be analyzed ultra-structurally. Our study contributes to reinforcing the potential of I. cylindrica as a candidate plant species to be used as a phytoremediation agent in Cu-contaminated environments.Malignant melanoma is one of the most deadly types of solid cancers, a property mainly attributed to its highly aggressive metastatic form. On the other hand, different classes of isothiocyanates, a class of phytochemicals, present in cruciferous vegetables have been characterized by considerable anti-cancer activity in both in vitro and in vivo experimental models. In the current study, we investigated the anti-cancer response of five isothiocyanates in an in vitro model of melanoma consisting of non-metastatic (A375, B16F-10) and metastatic (VMM1, Hs294T) malignant melanoma as well as non-melanoma epidermoid carcinoma (A431) and non-tumorigenic melanocyte-neighboring keratinocyte (HaCaT) cells. Our aim was to compare different endpoints of cytotoxicity (e.g., reactive oxygen species, intracellular glutathione content, cell cycle growth arrest, apoptosis and necrosis) descriptive of an anti-cancer response between non-metastatic and metastatic melanoma as well as non-melanoma epidermoid carcinoma and non-tumic for these cells and not shared by non-melanoma epidermoid carcinoma or non-tumorigenic melanocyte cells.

, is the etiological agent of neosporosis, an infection that causes abortions in cattle and nervous system dysfunction in dogs. Invasion and egress are the key steps of the pathogenesis of

infection. Microneme proteins (MICs) play important roles in the recognition, adhesion, and invasion of host cells in other apicomplexan parasites. However, some MICs and their functions in

infection have rarely been reported.

The homologous recombination strategy was used to investigate the function of MIC6 in

infection.

ΔNcMIC6 showed a smaller plaque size and weakened capacities of invasion and egress than Nc1. selleckchem Transcription levels of the egress-related genes CDPK1, PLP1, and AMA1 of ΔNcMIC6 were downregulated. Due to the lack of NcMIC6, virulence of the pathogen in the infected mouse was weakened. The subcellular localization of NcMIC1 and NcMIC4 in ΔNcMIC6, however, did not change. Nevertheless, the transcription levels of MIC1 and MIC4 in ΔNcMIC6 were downregulated, and the expression and secretion of MIC1 and MIC4 in ΔNcMIC6 were reduced compared with that in Nc1. Furthermore, the absence of NcMIC6 weakened the virulence in mice and lower parasite load detected in mice brains.

NcMIC6 is involved in host cell invasion and egress in

and may work synergistically with other MICs to regulate the virulence of the pathogen. These data lay a foundation for further research into the function and application of NcMIC6.

NcMIC6 is involved in host cell invasion and egress in N. caninum and may work synergistically with other MICs to regulate the virulence of the pathogen. These data lay a foundation for further research into the function and application of NcMIC6.The discovery of graphene drove intensive studies towards novel two-dimensional (2D) materials [...].Invasive fungal infections (IFIs) are difficult to diagnose and to treat and, despite several available antifungal drugs, cause high mortality rates. In the past decades, the incidence of IFIs has continuously increased. More recently, SARS-CoV-2-associated lethal IFIs have been reported worldwide in critically ill patients. Combating IFIs requires a more profound understanding of fungal pathogenicity to facilitate the development of novel antifungal strategies. Animal models are indispensable for studying fungal infections and to develop new antifungals. However, using mammalian animal models faces various hurdles including ethical issues and high costs, which makes large-scale infection experiments extremely challenging. To overcome these limitations, we optimized an invertebrate model and introduced a simple calcofluor white (CW) staining protocol to macroscopically and microscopically monitor disease progression in silkworms (Bombyx mori) infected with the human pathogenic filamentous fungi Aspergillus fumigatus and Lichtheimia corymbifera.