Horowitzfoss7778

From DigitalMaine Transcription Project
Revision as of 23:33, 21 November 2024 by Horowitzfoss7778 (talk | contribs) (Created page with "Here, we compared the proteomic profile of phosphorylated proteins in serine residues from healthy, LSIL, HSIL, and CC samples. Our data show an increase in the number of phos...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Here, we compared the proteomic profile of phosphorylated proteins in serine residues from healthy, LSIL, HSIL, and CC samples. Our data show an increase in the number of phosphorylated proteins in serine residues as the grade of injury rises. Exarafenib clinical trial These results provide a support for future studies focused on phosphorylated proteins and their possible correlation with the progression of cervical lesions. Copyright © 2020 Juan Ramón Padilla-Mendoza et al.Objectives To prepare the conductive MWCNT (multiwall carbon nanotube)-agarose scaffolds with multi-microchannel for neuron growth under electrical stimulation. Methods The scaffolds were produced by gradient freeze and lyophilization methods. The synthesized materials were characterized by SEM and near-infrared spectroscopy, and their microstructure, swelling-deswelling, conductivity, biocompatibility, and shape memory behavior were measured. A three-dimensional culture model by implanting cells into scaffolds was built, and the behaviors of RSC96 cells on scaffolds under electrical stimulation were evaluated. Results The addition of MWCNT did not affect the pore composition ratio and shape memory of agarose scaffolds, but 0.025% wt MWCNT in scaffolds improved the swelling ratio and water retention at the swelling equilibrium state. Though MWCNTs in high concentration had slight effect on proliferation of RSC96 cells and PC12 cells, there was no difference that the expressions of neurofilament of RSC96 cells on scaffolds with MWCNTs of different concentration. RSC96 cells arranged better along the longitudinal axis of scaffolds and showed better adhesion on both 0.025% MWCNT-agarose scaffolds and 0.05% MWCNT-agarose scaffolds compared to other scaffolds. Conclusions Agarose scaffolds with MWCNTs possessed promising applicable prospect in peripheral nerve defects. Copyright © 2020 Zhenhui Liu et al.Tuberculosis (TB) is an infectious disease, caused by Mycobacterium tuberculosis, primarily affecting the lungs. The M. tuberculosis strain of the Haarlem family named M was responsible for a large multidrug-resistant TB (MDR-TB) outbreak in Buenos Aires. This outbreak started in the early 1990s and in the mid 2000s still accounted for 29% of all MDR-TB cases in Argentina. By contrast, a clonal variant of strain M, named 410, has caused a single tuberculosis case since the onset of the outbreak. The molecular bases of the high epidemiological fitness of the M strain remain unclear. To assess its unique molecular properties, herein, we performed a comparative protein and lipid analysis of a representative clone of the M strain (Mp) and the nonprosperous M variant 410. We also evaluated their growth in low pH. The variant 410 had higher levels of latency proteins under standard conditions and delayed growth at low pH, suggesting that it is more sensitive to stress stimuli than Mp. Moreover, Mp showed higher levels of mycolic acids covalently attached to the cell wall and lower accumulation of free mycolic acids in the outer layer than the 410 strain. The low expression of latency proteins together with the reduced content of surface mycolic acids may facilitate Mp to evade the host immune responses. Copyright © 2020 Jinlong Bei et al.Space travel has advanced significantly over the last six decades with astronauts spending up to 6 months at the International Space Station. Nonetheless, the living environment while in outer space is extremely challenging to astronauts. In particular, exposure to space radiation represents a serious potential long-term threat to the health of astronauts because the amount of radiation exposure accumulates during their time in space. Therefore, health risks associated with exposure to space radiation are an important topic in space travel, and characterizing space radiation in detail is essential for improving the safety of space missions. In the first part of this review, we provide an overview of the space radiation environment and briefly present current and future endeavors that monitor different space radiation environments. We then present research evaluating adverse biological effects caused by exposure to various space radiation environments and how these can be reduced. We especially consider the deleterious effects on cellular DNA and how cells activate DNA repair mechanisms. The latest technologies being developed, e.g., a fluorescent ubiquitination-based cell cycle indicator, to measure real-time cell cycle progression and DNA damage caused by exposure to ultraviolet radiation are presented. Progress in examining the combined effects of microgravity and radiation to animals and plants are summarized, and our current understanding of the relationship between psychological stress and radiation is presented. Finally, we provide details about protective agents and the study of organisms that are highly resistant to radiation and how their biological mechanisms may aid developing novel technologies that alleviate biological damage caused by radiation. Future research that furthers our understanding of the effects of space radiation on human health will facilitate risk-mitigating strategies to enable long-term space and planetary exploration. Copyright © 2020 Satoshi Furukawa et al.Chronic obstructive pulmonary disease (COPD) features chronic inflammatory reactions of both intra- and extrapulmonary nature. Moreover, COPD is associated with abnormal glucose and lipid metabolism in patients, which influences the prognosis and chronicity of this disease. Abnormal glucose and lipid metabolism are also closely related to inflammation processes. Further insights into the interactions of inflammation and glucose and lipid metabolism might therefore inspire novel therapeutic interventions to promote lung rehabilitation. Chemerin, as a recently discovered adipokine, has been shown to play a role in inflammatory response and glucose and lipid metabolism in many diseases (including COPD). Chemerin recruits inflammatory cells to sites of inflammation during the early stages of COPD, leading to endothelial barrier dysfunction, early vascular remodeling, and angiogenesis. Moreover, it supports the recruitment of antigen-presenting cells that guide immune cells as part of the body's inflammatory responses.