Graylyons3181

From DigitalMaine Transcription Project
Revision as of 23:45, 21 November 2024 by Graylyons3181 (talk | contribs) (Created page with "Knockdown of mmu-miR-324-5p increased the levels of lncDum and myogenesis-related gene expression. Following oleate-induced lipid deposition in C2C12 myoblasts, overexpression...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Knockdown of mmu-miR-324-5p increased the levels of lncDum and myogenesis-related gene expression. Following oleate-induced lipid deposition in C2C12 myoblasts, overexpression of mmu-miR-324-5p decreased the expression of Pm20d1 while increasing the expression of mitochondrial β-oxidation and long-chain fatty acid synthesis-related genes. In conclusion, we provide evidence that miR-324-5p inhibits C2C12 myoblast differentiation and promotes intramuscular lipid deposition by targeting lncDum and Pm20d1, respectively.Meningitic Escherichia coli invasion of the host brain can lead to increased blood-brain barrier (BBB) permeability. Circular RNAs (circRNAs) are non-coding RNAs, highly abundant in the brain, that are widely involved in the pathological processes of central nervous system (CNS) disorders; however, whether circRNAs participate in the regulation of BBB permeability during E. coli meningitis remains unknown. Here, we identified a novel circRNA, circ_2858, that was significantly upregulated in human brain microvascular endothelial cells (hBMECs) upon meningitic E. coli infection. We also found that circ_2858 regulated BBB permeability in hBMECs by competitively binding miR-93-5p, thereby inducing the upregulation of vascular endothelial growth factor A and finally resulting in downregulation as well as altered distribution of tight junction proteins such as ZO-1, Occludin, and Claudin-5. These findings provide novel insights into the influence of circ_2858 on BBB permeability during the pathogenic process of E. coli meningitis, suggesting potential nucleic acid targets for future prevention and therapy of CNS infection induced by meningitic E. coli.Despite significant advances in the treatment of myocardial ischemia-reperfusion (I/R) injury, coronary circulation is a so far neglected target of cardioprotection. In this study, we investigated the molecular mechanisms underlying I/R injury to cardiac microcirculation. Using gene delivery, we analyzed microvascular protective effects of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) on the reperfused heart and examined the role of SERCA in regulating mitochondrial quality control in cardiac microvascular endothelial cells (CMECs). Our data showed that SERCA overexpression attenuates lumen stenosis, inhibits microthrombus formation, reduces inflammation response, and improves endothelium-dependent vascular relaxation. In vitro experiments demonstrated that SERCA overexpression improves endothelial viability, barrier integrity, and cytoskeleton assembly in CMECs. Mitochondrial quality control, including mitochondrial fusion, mitophagy, bioenergetics, and biogenesis, were disrupted by I/R injury but were restored by SERCA overexpression. SERCA overexpression also restored mitochondrial quality control by inhibiting calcium overload, inactivating xanthine oxidase (XO), and reducing intracellular/mitochondrial reactive oxygen species (ROS). Administration of exogenous XO or a calcium channel agonist abolished the protective effects of SERCA overexpression on mitochondrial quality control and offset the beneficial effects of SERCA overexpression after cardiac microvascular I/R injury. These findings indicate that SERCA overexpression may be an effective approach to targeting cardiac microvascular I/R injury by regulating calcium/XO/ROS signaling and preserving mitochondrial quality control.Preeclampsia is believed to be caused by impaired placentation with insufficient trophoblast invasion, leading to impaired uterine spiral artery remodeling and angiogenesis. selleck chemical However, the underlying molecular mechanism remains unknown. We recently carried out transcriptome profiling of placental long noncoding RNAs (lncRNAs) and identified 383 differentially expressed lncRNAs in early-onset severe preeclampsia. Here, we are reporting our identification of lncRNA INHBA-AS1 as a potential causal factor of preeclampsia and its downstream pathways that may be involved in placentation. We found that INHBA-AS1 was upregulated in patients and positively correlated with clinical severity. We systematically searched for potential INHBA-AS1-binding transcription factors and their targets in databases and found that the targets were enriched with differentially expressed genes in the placentae of patients. We further demonstrated that the lncRNA INHBA-AS1 inhibited the invasion and migration of trophoblast cells through restraining the transcription factor CENPB from binding to the promoter of TNF receptor-associated factor 1 (TRAF1). Therefore, we have identified the dysregulated pathway "INHBA-AS1-CENPB-TRAF1" as a contributor to the pathogenesis of preeclampsia through prohibiting the proliferation, invasion, and migration of trophoblasts during placentation.Circular RNAs (circRNAs) are expressed at high levels in the brain and are involved in various central nervous system diseases. However, the potential role of circRNAs in ischemic stroke-associated neuronal injury remains largely unknown. Herein, we uncovered the function and underlying mechanism of the circRNA UCK2 (circUCK2) in ischemia stroke. The oxygen-glucose deprivation model in HT-22 cells was used to mimic ischemia stroke in vitro. Neuronal viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assays and TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling) staining, respectively. Middle cerebral artery occlusion was conducted to evaluate the function of circUCK2 in mice. The levels of circUCK2 were significantly decreased in brain tissues from a mouse model of focal cerebral ischemia and reperfusion. Upregulated circUCK2 levels significantly decreased infarct volumes, attenuated neuronal injury, and improved neurological deficits. circUCK2 reduced oxygen glucose deprivation (OGD)-induced cell apoptosis by regulating transforming growth factor β (TGF-β)/mothers against decapentaplegic homolog 3 (Smad3) signaling. Furthermore, circUCK2 functioned as an endogenous miR-125b-5p sponge to inhibit miR-125b-5p activity, resulting in an increase in growth differentiation factor 11 (GDF11) expression and a subsequent amelioration of neuronal injury. Consequently, these findings showed that the circUCK2/miR-125b-5p/GDF11 axis is an essential signaling pathway during ischemia stroke. Thus, the circRNA circUCK2 may serve as a potential target for novel treatment in patients with ischemic stroke.