Linkabildtrup4708
Citrus species extracts are well known sources of bio-functional compounds with health-promoting effects. In particular, essential oils are known for their antibacterial activity due to the high content of terpenes. In this work, the steam-distilled essential oil from the leaves of Citrus limon var. Selleckchem TPH104m pompia was loaded in phospholipid vesicles. The physico-chemical characteristics of the essential oil loaded vesicles were compared with those of vesicles that were loaded with citral, which is one of the most abundant terpenes of Citrus essential oils. The biocompatibility of the vesicles was assessed in vitro in human keratinocytes. Furthermore, the antimicrobial activity of the vesicles was tested while using different bacterial strains and a yeast Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans, respectively. The vesicles were small in size (~140 nm), slightly polydispersed (PI ~ 0.31), highly negatively charged (~ -73 mV), and able to incorporate high amounts of essential oil or citral (E% ~ 86%). Pompia essential oil and citral exhibited antimicrobial activity against all of the assayed microorganisms, with P. aeruginosa being the least sensitive. Citral was slightly more effective than pompia essential oil against E. coli, S. aureus, and C. albicans. The incorporation of citral in vesicles improved its antifungal activity against C. albicans.With the major advance in nanotechnology, there has been an emerging interest in applying nanoscale materials to asphalt pavement materials. Among them, considerable interest has been directed to carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphite nanoplatelets (GNPs). Recent studies have proven that the addition of small percentages of GNPs could significantly reduce the compaction effort required to densify HMA. Viscosity measurements showed, however, that the addition of GNPs increased the viscosity of the binder. This observation pointed towards the presence of a different mechanism responsible for the reduction of compaction effort. A new test method used for lubricants and based on tribology has been recently proposed in order to characterize the lubricating behaviour of asphalt binders. In this study, the tribological characterization of an asphalt binder modified with GNPs was performed. A novel approach in which aggregate surface microtexture was simulated using rough surfaces of the testing fixtures, shows that indeed, the addition of GNPs lowers the friction coefficient and therefore, enhances the lubrication properties of the binder when mixed with mineral aggregates.Background and Objectives Choosing a pain management strategy is essential for improving recovery after surgery. Effective pain management reduces the stress response, facilitates mobilization, and improves the quality of the postoperative period. The aim of the study was to assess the effectiveness of pain management in patients after surgery. Materials and Methods The study included 216 patients operated on in the following surgical wards the Department of Cardiosurgery and the Department of General and Endocrine Surgery. Patients were hospitalized on average for 6 ± 4.5 days. Patients were randomly selected for the study using a questionnaire technique with a numerical rating scale. Results Immediately after surgery, pre-emptive analgesia, multimodal analgesia, and analgosedation were used significantly more frequently than other methods (p less then 0.001). In the subsequent postoperative days, the method of administering drugs on demand was used most often. Patients with confirmed complications during postoperative wound healing required significantly more frequent use of drugs from Steps 2 and 3 of the World Health Organization (WHO) analgesic ladder compared with patients without complications. Conclusion The mode of patient admission for surgery significantly affected the level of pain perception. Different pain management methods were used and not every method was effective.The cornea is avascular, which makes it an excellent model to study matrix protein expression and tissue stiffness. The corneal epithelium adheres to the basement zone and the underlying stroma is composed of keratocytes and an extensive matrix of collagen and proteoglycans. Our goal was to examine changes in corneas of 8- and 15-week mice and compare them to 15-week pre-Type 2 diabetic obese mouse. Nanoindentation was performed on corneal epithelium in situ and then the epithelium was abraded, and the procedure repeated on the basement membrane and stroma. Confocal imaging was performed to examine the localization of proteins. Stiffness was found to be age and obesity dependent. Young's modulus was greater in the epithelium from 15-week mice compared to 8-week mice. At 15 weeks, the epithelium of the control was significantly greater than that of the obese mice. There was a difference in the localization of Crb3 and PKCζ in the apical epithelium and a lack of lamellipodial extensions in the obese mouse. In the pre-Type 2 diabetic obese mouse there was a difference in the stiffness slope and after injury localization of fibronectin was negligible. These indicate that age and environmental changes incurred by diet alter the integrity of the tissue with age rendering it stiffer. The corneas from the pre-Type 2 diabetic obese mice were significantly softer and this may be a result of changes both in proteins on the apical surface indicating a lack of integrity and a decrease in fibronectin.Prostate cancer (PCa) is a disease affecting an increasing number of men worldwide. Several efforts have been made to identify imaging biomarkers to non-invasively detect and characterize PCa, with substantial improvements thanks to multiparametric Magnetic Resonance Imaging (mpMRI). In recent years, diffusion kurtosis imaging (DKI) was proposed to be directly related to tissue physiological and pathological characteristic, while the radiomic approach was proven to be a key method to study cancer imaging phenotypes. Our aim was to compare a standard radiomic model for PCa detection, built using T2-weighted (T2W) and Apparent Diffusion Coefficient (ADC), with an advanced one, including DKI and quantitative Dynamic Contrast Enhanced (DCE), while also evaluating differences in prediction performance when using 2D or 3D lesion segmentation. The obtained results in terms of diagnostic accuracy were high for all of the performed comparisons, reaching values up to 0.99 for the area under a receiver operating characteristic curve (AUC), and 0.