Shannonmorgan6819

From DigitalMaine Transcription Project
Revision as of 13:27, 22 November 2024 by Shannonmorgan6819 (talk | contribs) (Created page with "nism for oxidation of the heterochiral cerium REMB frameworks, reiterating the importance of the formation of inner-sphere complexes in the oxidation chemistry of cerium. Ther...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

nism for oxidation of the heterochiral cerium REMB frameworks, reiterating the importance of the formation of inner-sphere complexes in the oxidation chemistry of cerium. There are many different avenues for both organic and inorganic investigation of Shibasaki's REMB framework, and our works have demonstrated the richness of the structural chemistry and properties of this framework that inform mechanism and properties of these privileged catalysts.Chlorophyll special pairs in photosynthetic reaction centers function as both exciton acceptors and primary electron donors. Although the macrocyclic natural pigments contain Mg(II), the central metal in most synthetic analogs is Zn(II). Here we report that insertion of either Al(III) or Ga(III) into an imidazole-substituted corrole affords an exceptionally robust photoactive dimer. Notably, attractive electronic interactions between dimer subunits are relatively strong, as documented by signature changes in NMR and electronic absorption spectra, as well as by cyclic voltammetry, where two well-separated reversible redox couples were observed. EPR spectra of one-electron oxidized dimers closely mimic those of native special pairs, and strong through-space interactions between corrole subunits inferred from spectroscopic and electrochemical data are further supported by crystal structure analyses (3 Å interplanar distances, 5 Å lateral shifts, and 6 Å metal to metal distances).Titanium is extensively employed in modern medicines as orthopedic and dental implants, but implant failures frequently occur because of bacterial infections. Herein, three types of 3D nanostructured titanium surfaces with nanowire clusters (NWC), nanowire/sheet clusters (NW/SC) and nanosheet clusters (NSC), were fabricated using the low-temperature hydrothermal synthesis under normal pressure, and assessed for the sterilization against two common human pathogens. The results show that the NWC and NSC surfaces merely display good bactericidal activity against Escherichia coli, whereas the NW/SC surface represents optimal bactericidal efficiency against both Escherichia coli (98.6 ± 1.23%) and Staphylococcus aureus (69.82 ± 2.79%). That is attributed to the hybrid geometric nanostructure of NW/SC, i.e., the pyramidal structures of ∼23 nm in tip diameter formed with tall clustered wires, and the sharper sheets of ∼8 nm in thickness in-between these nanopyramids. This nanostructure displays a unique mechano-bactericidal performance via the synergistic effect of capturing the bacteria cells and penetrating the cell membrane. This study proves that the low-temperature hydrothermal synthesized hybrid mechano-bactericidal titanium surfaces provide a promising solution for the construction of bactericidal biomedical implants.Human ornithine aminotransferase (hOAT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that was recently found to play an important role in the metabolic reprogramming of hepatocellular carcinoma (HCC) via the proline and glutamine metabolic pathways. The selective inhibition of hOAT by compound 10 exhibited potent in vivo antitumor activity. Inspired by the discovery of the aminotransferase inactivator (1S,3S)-3-amino-4-(difluoromethylene)cyclopentane-1-carboxylic acid (5), we rationally designed, synthesized, and evaluated a series of six-membered-ring analogs. Among them, 14 was identified as a new selective hOAT inactivator, which demonstrated a potency 22× greater than that of 10. Three different types of protein mass spectrometry approaches and two crystallographic approaches were employed to identify the structure of hOAT-14 and the formation of a remarkable final adduct (32') in the active site. These spectral studies reveal an enzyme complex heretofore not observed in a PLP-dependent enzyme, which has covalent bonds to two nearby residues. Crystal soaking experiments and molecular dynamics simulations were carried out to identify the structure of the active-site intermediate 27' and elucidate the order of the two covalent bonds that formed, leading to 32'. The initial covalent reaction of the activated warhead occurs with *Thr322 from the second subunit, followed by a subsequent nucleophilic attack by the catalytic residue Lys292. The turnover mechanism of 14 by hOAT was supported by a mass spectrometric analysis of metabolites and fluoride ion release experiments. This novel mechanism for hOAT with 14 will contribute to the further rational design of selective inactivators and an understanding of potential inactivation mechanisms by aminotransferases.Bismuth telluride alloys have dominated the industrial application of thermoelectric cooling, but the relatively poor mechanical performance of commercial zone-melting material seriously limits the device integration and stability. Here, we exhibit synergistically enhanced thermoelectric and mechanical performances of sintered Bi0.48Sb1.52Te3-AgSbSe2 composites. It is found that the increased hole concentration improves the S2σ to 40 μW cm-1 K-2 at room temperature, and the emerged various defects effectively suppress the κl to 0.57 W m-1 K-1 at 350 K. All effects harvest a highest ZT = 1.2 at 350 K along with an average ZT = 1.0 between 300-500 K in the x = 0.2 sample. check details Notably, AgSbSe2 addition not only optimizes the thermoelectric properties, but also enhances the mechanical performance with a Vickers hardness of 0.75 GPa. Furthermore, the isotropy of thermoelectric properties is also observably promoted by solid-phase reaction combined with high-energy ball milling and hot pressing. Our study reveals a viable strategy to improve the comprehensive performance of sintered bismuth telluride materials.Novel cobalt oxides, CaCo12O19 and BaCo12O19, have been synthesized under high-pressure and high-temperature conditions of 7 GPa and 1373 K, respectively. Rietveld refinement using synchrotron X-ray diffraction data indicates that the CaCo12O19 and BaCo12O19 crystallize in a magnetoplumbite structure with a hexagonal space group of P63/mmc (No. 194) as well as SrCo12O19. The magnetic study demonstrates that itinerant and localized 3d electrons coexist in all ACo12O19 (A = Ca, Sr, Ba) and the magnetic ground state transforms from antiferromagnetic (A = Ca) to ferrimagnetic (A = Sr) to antiferromagnetic (A = Ba), which is in stark contrast to the systematic change in the magnetoplumbite-related cobalt oxides of ACo6O11 from antiferromagnet (A = Ca) to ferrimagnet (A = Sr) to ferromagnet (A = Ba). The nonmonotonic magnetic evolution with isoelectronic A-site substitution in ACo12O19 is probably attributed to changes in the interactions between two magnetic sublattices of localized 3d electrons at trigonal-bipyramidal and tetrahedral sites for ACo12O19.