Liubain7467

From DigitalMaine Transcription Project
Revision as of 13:54, 22 November 2024 by Liubain7467 (talk | contribs) (Created page with "Astrocytes are fundamental components of brain information processing and possess the ability to respond to synaptic signaling with increases in cytoplasmic calcium and modula...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Astrocytes are fundamental components of brain information processing and possess the ability to respond to synaptic signaling with increases in cytoplasmic calcium and modulate neuronal activity with the subsequent release of neuroactive transmitters. Dopamine signaling is essential for brain physiology and pathology, participating in learning and memory, motor control, neurological diseases, and psychiatric diseases, and astrocytes are emerging as a key cellular target of dopamine signaling. The present review will examine evidence revealing that astrocytes respond to dopamine and modulate information processing in the primary brain regions implicated in the mesolimbic dopamine system. Astrocytes exhibit circuit-specific modulation of neuronal networks and have the potential to serve as a therapeutic target for interventions designed for dopamine pathologies.The growing problem of antibiotic resistance has led to the exploration of uncultured bacteria as potential sources of new antimicrobials. PCR amplicon analyses and short-read sequencing studies of samples from different environments have reported evidence of high biosynthetic gene cluster (BGC) diversity in metagenomes, indicating their potential for producing novel and useful compounds. However, recovering full-length BGC sequences from uncultivated bacteria remains a challenge due to the technological restraints of short-read sequencing, thus making assessment of BGC diversity difficult. Here, long-read sequencing and genome mining were used to recover >1400 mostly full-length BGCs that demonstrate the rich diversity of BGCs from uncultivated lineages present in soil from Mars Oasis, Antarctica. A large number of highly divergent BGCs were not only found in the phyla Acidobacteriota, Verrucomicrobiota and Gemmatimonadota but also in the actinobacterial classes Acidimicrobiia and Thermoleophilia and the gammaproteobacterial order UBA7966. The latter furthermore contained a potential novel family of RiPPs. Our findings underline the biosynthetic potential of underexplored phyla as well as unexplored lineages within seemingly well-studied producer phyla. They also showcase long-read metagenomic sequencing as a promising way to access the untapped genetic reservoir of specialised metabolite gene clusters of the uncultured majority of microbes.Diverse antibiotic compounds are abundant in microbial habitats undergoing recurrent wet-dry cycles, such as soil, root and leaf surfaces, and the built environment. These antibiotics play a central role in microbial warfare and competition, thus affecting population dynamics and the composition of natural microbial communities. Yet, the impact of wet-dry cycles on bacterial response to antibiotics has been scarcely explored. Using the bacterium E. coli as a model organism, we show through a combination of experiments and computational modeling, that wet-dry cycles protect bacteria from beta-lactams. This is due to the combined effect of several mechanisms including tolerance induced by high salt concentrations and slow cell-growth, which are inherently associated with microscopic surface wetness-a hydration state typical to 'dry' periods. Moreover, we find evidence for a cross-protection effect, where lethal doses of antibiotic considerably increase bacterial survival during the dry periods. This work focuses on beta-lactams, yet similar protection was observed for additional major antibiotic classes. Our findings shed new light on how we understand bacterial response to antibiotics, with broad implications for population dynamics, interspecies interactions, and the evolution of antibiotic resistance in vast terrestrial microbial habitats.Retinal ganglion cell (RGC) death occurs after optic nerve injury due to acute trauma or chronic degenerative conditions such as optic neuropathies (e.g., glaucoma). Currently, there are no effective therapies to prevent permanent vision loss resulting from RGC death, underlining the need for research on the pathogenesis of RGC disorders. Modeling human RGC/optic nerve diseases in non-human primates is ideal because of their similarity to humans, but has practical limitations including high cost and ethical considerations. In addition, many retinal degenerative disorders are age-related making the study in primate models prohibitively slow. For these reasons, mice and rats are commonly used to model RGC injuries. However, as nocturnal mammals, these rodents have retinal structures that differ from primates - possessing less than one-tenth of the RGCs found in the primate retina. Here we report the diurnal thirteen-lined ground squirrel (TLGS) as an alternative model. Ilginatinib molecular weight Compared to other rodent models, the number and distribution of RGCs in the TLGS retina are closer to primates. The TLGS retina possesses ~600,000 RGCs with the highest density along the equatorial retina matching the location of the highest cone density (visual streak). TLGS and primate retinas also share a similar interlocking pattern between RGC axons and astrocyte processes in the retina nerve fiber layer (RNFL). In addition, using TLGS we establish a new partial optic nerve injury model that precisely controls the extent of injury while sparing a portion of the retina as an ideal internal control for investigating the pathophysiology of axon degeneration and RGC death. Moreover, in vivo optical coherence tomography (OCT) imaging and ex vivo microscopic examinations of the retina in optic nerve injured TLGS confirm RGC loss precedes proximal axon degeneration, recapitulating human pathology. Thus, the TLGS retina is an excellent model, for translational research in neurodegeneration and therapeutic neuroprotection.Five sporadic Creutzfeldt-Jakob disease (CJD) strains have been identified to date, based on differences in clinicopathological features of the patients, the biochemical properties of abnormal prion proteins, and transmission properties. Recent advances in our knowledge about iatrogenic transmission of sporadic CJD have raised the possibility that the infectivity of sporadic CJD strains through peripheral routes is different from that of intracranial infection. To test this possibility, here we assessed systematically the infectivity of sporadic CJD strains through the peripheral route for the first time using a mouse model expressing human prion protein. Although the infectivity of the V2 and M1 sporadic CJD strains is almost the same in intracerebral transmission studies, the V2 strain infected more efficiently than the M1 strain through the peripheral route. The other sporadic CJD strains examined lacked infectivity. Of note, both the V2 and M1 strains showed preference for mice with the valine homozygosity at the PRNP polymorphic codon.