Langstonkonradsen4076

From DigitalMaine Transcription Project
Revision as of 14:20, 22 November 2024 by Langstonkonradsen4076 (talk | contribs) (Created page with "Furthermore, the terahertz shielding and stealth performance of the few-layer borophene has been explored. The maximum terahertz shielding effectiveness value of the prepared...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Furthermore, the terahertz shielding and stealth performance of the few-layer borophene has been explored. The maximum terahertz shielding effectiveness value of the prepared material could reach up to 50 dB and 21.5 dB for the reflection loss value in the broadband range of 0.1-2.7 THz. The large-scale preparation of few-layer borophene through mechanical method makes it possible to study the properties of borophene and achieves low-cost large-scale applications. Such as the study of terahertz shielding and stealth performance in the article which facilitate the lightweight material design for terahertz shielding and stealth.Intensified human activities have generated a large amount of phosphorus-containing waste (P waste). Unrecycled P waste is lost to the environment and causes eutrophication, while the increasing phosphate consumption risks the depletion of phosphorus resources. The management of P waste is critical to solving these problems. In this study, we quantified the historic trends of P waste generation and recycling in China. From 1900 to 2015, the annual generation of P waste increased from 1 Mt P to 12 Mt P. Crop farming was the largest P waste source in most years, while P waste from phosphate mining and phosphorus chemical production increased the fastest. The total recycled P waste increased 5-fold, but phosphorus loss increased 26-fold. In 2015, 28% of the P waste was lost on cultivated land, and 21% was lost on nonarable land. The largest phosphorus contributor to inland water changed from crop farming to aquaculture. The full recycling of P waste would have reduced phosphate consumption by more than one-third in 2015. The results of a scenario analysis showed that a healthier diet would greatly increase the generation and loss of P waste, but balanced fertilization could reduce the generation of P waste by 17% and promoting waste recycling could reduce the phosphorus loss by 35%.Solar distillation through photothermal evaporators has approached solar light energy (E1) limit under no solar concentration but still suffers from modest vapor and clean water production. Herein, a nature-inspired low-tortuosity three-dimensional (3D) evaporator is demonstrated to significantly improve water production. The solar evaporator, prepared from polypyrrole-modified maize straw (PMS), had upright vascular structures enabling high water lifting and horizontal microgaps facilitating broad water distribution to the out-surface. Selleck GsMTx4 Consequently, this novel PMS evaporator dramatically enhanced the utilization of the solar heat energy stored in the environment (E2) for promoting evaporation. The maximum vapor generation rate of a single PMS respectively increases 2.5 and 6 times compared with the conventional 3D evaporators and the planar evaporators of an identical occupied area. Consequently, a scaled-up PMS array achieved a state-of-the-art vapor generation rate of 3.0 L m-2 h-1 (LMH) under a simulated condition and a record-high clean water production of 2.2 LMH for actual seawater desalination under natural conditions (1 sun intensity). This breakthrough reveals great potentials for cost-effective freshwater production as well as the rational design of high-performance photothermal evaporators for solar distillation.Plastic materials contain various additives, which can be released during the entire lifespan of plastics and pose a threat to the environment and human health. Despite our knowledge on leakage of additives from products, accurate and rapid approaches to study emission kinetics are largely lacking, in particular, methodologies that can provide in-depth understanding of polymer/additive interactions. Here, we report on a novel approach using quartz crystal microbalance (QCM) to measure emissions of additives to water from polymer films spin-coated on quartz crystals. The methodology, being accurate and reproducible with a standard error of ±2.4%, was applied to a range of organophosphate esters (OPEs) and polymers with varying physicochemical properties. The release of most OPEs reached an apparent steady-state within 10 h. The release curves for the studied OPEs could be fitted using a Weibull model, which shows that the release is a two-phase process with an initial fast phase driven by partitioning of OPEs readily available at or close to the polymer film surface, and a slower phase dominated by diffusion in the polymer. The kinetics of the first emission phase was mainly correlated with the hydrophobicity of the OPEs, whereas the diffusion phase was weakly correlated with molecular size. The developed QCM-based method for assessing and studying release of organic chemicals from a polymeric matrix is well suited for rapid screening of additives in efforts to identify more sustainable replacement polymer additives with lower emission potential.Excellent comprehensive dielectric properties (including dielectric constant and loss) are essential for electromechanical transducers. This work introduced a bimodal network composite with poly(dimethyl siloxane) (PDMS) and delaminated Ti3C2Tx sheets (d-Ti3C2Tx) modified with hyperbranched polysiloxane (HPSi) (referred to as HPSi-d-Ti3C2Tx). Before the final cross-linking, HPSi-d-Ti3C2Tx, trapped with short-chain PDMS (CS-PDMS) and long-chain PDMS (CL-PDMS), was pre-reacted, which formed a distinct bimodal network structure. d-Ti3C2Tx/PDMS and HPSi-d-Ti3C2Tx/PDMS composites with different filler loadings were prepared, and their percolation thresholds (fc) were 1.32 and 1.43 vol %, respectively The dielectric constant of 1.40 vol % HPSi-d-Ti3C2Tx/PDMS is 23.7 at 102 Hz, which is 1.5 times that of 1.28 vol % d-Ti3C2Tx/PDMS and 8.5 times that of pure PDMS. Meanwhile, the dielectric loss of HPSi-d-Ti3C2Tx/PDMS composite is still relatively small (0.11 at 103 Hz). The origin of dielectric property optimization of the composite is attributed to the boundary capacitor model, the accumulated charges at the interfaces between the conductive filler and the insulating polymer matrix of the composite, and the distinct bimodal network structure.A novel Fenton-like catalyst was synthesized by immobilizing nano-Fe2O3 (nFe2O3) on MIL-53(Cu). The pseudo-first-order rate constant of bisphenol A degradation in the nFe2O3/MIL-53(Cu)/H2O2 system reached 0.0123 min-1, while the values in MIL-53(Cu)/H2O2 and nFe2O3/H2O2 systems were only 0.0026 and 0.0040 min-1, respectively. The characterization of nFe2O3/MIL-53(Cu) reveals that the supreme catalytic activity of this material could be ascribed to iron-copper synergy, smaller size, and better dispersion of nFe2O3 particles. Moreover, a method of trapping Cu(I) by neocuproine was developed, which could shield Cu(I) from interacting with iron and H2O2, and thus allow quantitative differentiation of the contribution to the enhanced catalytic activity by each of the factors. Using this method, 19% of the enhancement was determined to be contributed by synergistic effect, while 24% of the enhancement was due to the smaller size and better dispersion of the nFe2O3 particles on MIL-53(Cu) support. In addition, the performance of nFe2O3/MIL-53(Cu) only dropped 10.