Merrilllang2591

From DigitalMaine Transcription Project
Revision as of 15:05, 22 November 2024 by Merrilllang2591 (talk | contribs) (Created page with "Management of the axilla in the era of neoadjuvant chemotherapy for breast cancer is evolving. The aim of this study is to determine if conventional gadolinium-enhanced breast...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Management of the axilla in the era of neoadjuvant chemotherapy for breast cancer is evolving. The aim of this study is to determine if conventional gadolinium-enhanced breast MRI can aid in evaluation of the response to neoadjuvant chemotherapy in the axilla. A retrospective review of a prospectively maintained database of patients undergoing neoadjuvant chemotherapy for breast cancer was performed. Pre and post-neoadjuvant chemotherapy MRI reports for node-positive patients were examined in conjunction with demographic data, treatment type, and final histopathology reports. One-hundred and fourteen patients with breast cancer undergoing neoadjuvant chemotherapy were included in the study. The sensitivity of magnetic resonance imaging in detecting nodal response post-neoadjuvant chemotherapy was 33.93% and the specificity was 82.76%. Magnetic resonance imaging had a positive predictive value of 65.52% and a negative predictive value of 56.47%. MRI was found to be most specific in the detection of triple-negative cancer response. Specificity was 100% in this group and sensitivity was 75%. Magnetic resonance imaging has a relatively high specificity in detecting nodal response post-neoadjuvant chemotherapy but has a low sensitivity. Alone it cannot be relied upon to identify active axillary malignancy post-neoadjuvant chemotherapy. However, given its increased specificity among certain subgroups, it may have a role in super-selecting patients suitable for sentinel lymph node biopsy post-neoadjuvant chemotherapy.Apoptosis of nucleus pulposus (NP) cells has an important role in the process of intervertebral disc degeneration (IDD), and the search for novel compounds to prevent apoptosis from occurring is urgently required. In the present study, syringic acid (SyrA) was found to exhibit no cytotoxicity on NP cells, and was able to reverse the cytotoxicity, as well as the abnormal expression of Bcl‑2 and caspase‑3, that were induced by lipopolysaccharide (LPS). The transcriptomes of each group were then analyzed using RNA‑Seq. A total of 65 differentially expressed genes (DEGs) were identified in LPS‑stimulated groups (LPS group vs. control group), 819 DEGs were identified in the SyrA‑reversed groups (SyrA plus LPS group vs. LPS group), and a further 25 DEGs were identified in the SyrA plus LPS group compared with the control group. Reverse transcription‑quantitative PCR validation indicated that the alterations in expression of uroplakin 3B‑like 1 (UPK3BL1), voltage‑dependent calcium channel subunit α‑2/δ‑1 (CACNA2D1) and polo‑like kinase 4 (PLK4) were consistent with the corresponding results of RNA‑Seq, and that these genes were involved in both LPS‑stimulation and SyrA‑reversion processes. Kyoto Encyclopedia of Genes and Genomes analyses indicated that the DEGs in SyrA‑reversed groups were involved in, amongst other pathways, 'Autophagy‑other' and 'Apoptosis‑multiple species'. In conclusion, the addition of SyrA to the NP cells co‑incubated with LPS appeared to help prevent the abnormal expression of mRNAs and apoptosis that had been identified in NP cells incubated with LPS alone. The potential mechanism underlying the reversion of SyrA might be attributed to the regulation of CACNA2D1 and PLK4.Polycystic ovary syndrome (PCOS) is one of the most common endocrine metabolic disorders characterized by hyperandrogenism, polycystic ovaries and ovulatory dysfunction. Several studies have suggested that the aberrant expression of microRNAs (miRNAs/miRs) plays an important role in the pathogenesis of PCOS; however, the role and underlying mechanisms of miR‑132 in the development of PCOS remain unclear. In the present study, the expression of miR‑132 in granulosa cells (GCs) derived from 26 patients with PCOS and 30 healthy controls was detected by reverse transcription‑quantitative PCR (RT‑qPCR). The apoptosis of GCs was examined using a TUNEL assay. The human ovarian granulosa‑like tumor cell line, KGN, was cultured for Cell Counting Kit‑8 assays following the overexpression or knockdown of miR‑132. TargetScan was applied to identify the potential targets of miR‑132, which was further verified by a luciferase assay, RT‑qPCR and western blotting. The expression of miR‑132 was decreased in GCs from patients with PCOS. Moreover, the GCs of patients with PCOS exhibited significantly increased apoptotic nuclei. Furthermore, the overexpression of miR‑132 inhibited the viability of KGN cells. Thiazovivin research buy In addition, the results verified that miR‑132 directly targeted forkhead box protein A1 (Foxa1), the knockdown of which suppressed KGN cell viability. On the whole, the findings of the present study demonstrated that miR‑132 inhibited cell viability and induced apoptosis by directly interacting with Foxa1. Thus, miR‑132 may be a potential target for the treatment of patients with PCOS.Insufficient invasion of trophoblasts is correlated with the development of preeclampsia (PE). MicroRNA (miR)‑491‑5p has been reported to be implicated in human cancer cell invasion; however, whether miR‑491‑5p is involved in the development of PE remains largely unclear. The aim of the present study was to investigate the role of miR‑491‑5p in trophoblastic invasion in vitro and to determine its underlying mechanism of action. The expression levels of miR‑491‑5p were validated using reverse transcription‑quantitative PCR. The effects of miR‑491‑5p on trophoblast cell invasion were evaluated in vitro. Then, the association between miR‑491‑5p and its downstream target was investigated in both cell lines and clinical specimens. miR‑491‑5p expression levels were observed to be significantly increased in the placental tissues from patients with PE. The invasive capacity of HTR‑8/SVneo trophoblast cells was suppressed following the upregulation of miR‑491‑5p and increased following the inhibition of miR‑491‑5p. Matrix metalloproteinase‑9 (MMP‑9), a well‑known regulator of trophoblast cell invasion, was discovered to be a direct target of miR‑491‑5p in HTR‑8/SVneo trophoblast cells. Moreover, miR‑491‑5p expression levels were found to be inversely correlated with MMP‑9 expression levels in placental tissues from patients with PE. The overexpression of MMP‑9 partly attenuated the inhibitory effects of miR‑491‑5p on HTR‑8/SVneo trophoblast cells invasion. Collectively, these findings suggested that the aberrant expression of miR‑491‑5p may contribute to PE through suppressing trophoblast invasion, thus highlighting the novel roles of miR‑491‑5p in the molecular pathogenesis of PE. The present study also showed that the miR‑491‑5p/MMP‑9 axis may be an effective biomarker or a viable drug target for therapeutic intervention in PE.