Snyderklit3060

From DigitalMaine Transcription Project
Revision as of 15:15, 22 November 2024 by Snyderklit3060 (talk | contribs) (Created page with "Knowledge of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) has increased over time. Much of this knowledge is about the 16 United States - Environmental Prote...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Knowledge of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) has increased over time. Much of this knowledge is about the 16 United States - Environmental Protection Agency (US - EPA) priority PAHs; however, there are other US - EPA non-priority PAHs in the environment, whose toxic potential is underestimated. We conducted a systematic review of in vitro, in vivo, and in silico studies to assess the genotoxicity, mutagenicity, and carcinogenicity of 13 US - EPA non-priority parental PAHs present in the environment. Electronic databases, such as Science Direct, PubMed, Scopus, Google Scholar, and Web of Science, were used to search for research with selected terms without time restrictions. After analysis, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, 249 articles, published between 1946 and 2020, were selected and the quality assessment of these studies was performed. The results showed that 5-methylchrysene (5-MC), 7,12-dimethylbenz[a]anthracene (7,12-DMBA), cyclopenta[cd]pyrene (CPP), and dibenzo[al]pyrene (Db[al]P) were the most studied PAHs. Moreover, 5-MC, 7,12-DMBA, benz[j]aceanthrylene (B[j]A), CPP, anthanthrene (ANT), dibenzo[ae]pyrene (Db[ae]P), and Db[al]P have been reported to cause mutagenic effects and have been being associated with a risk of carcinogenicity. Retene (RET) and benzo[c]fluorene (B[c]F), the least studied compounds, showed evidence of a strong influence on the mutagenicity and carcinogenicity endpoints. Overall, this systematic review provided evidence of the genotoxic, mutagenic, and carcinogenic endpoints of US - EPA non-priority PAHs. However, further studies are needed to improve the future protocols of environmental analysis and risk assessment in severely exposed populations.Microplastics, an emerging pollutant in the environment, have attracted extensive attention in recent years for their possible negative impact on organisms. However, direct and indirect effects of polystyrene (PS) microplastics on vegetables are still not completely known. In this study, we used red lettuce (Lactuca sativa L. Red Sails) in a hydroponic system to investigate the effects of nano- and micro-sized PS and dibutyl phthalate (DBP) on the photosynthesis and red lettuce quality. The results clearly indicated that PS reduced the bioavailability of DBP while causing a decrease in the photosynthetic parameters as well as the total chorophyll content compared to DBP alone by affecting the crystalline structure of the water-soluble chlorophyll protein. Compared with DBP monotherapy, the presence of PS significantly increased hydrogen peroxide and malondialdehyde content in the lettuce treated with DBP, indicating serious oxidative damage. Furthermore, the soluble protein and sugar content in lettuce leaves decreased with higher PS concentration and smaller PS size. It may be due to PS inhibited lettuce root and ribulose-1,5-bisphosphate carboxylase/oxygenase activities. In contrast, nitrite content increased significantly with the induction of the glutathione-ascorbic acid cycle, indicating that the presence of PS reduced the quality of DBP-treated-red lettuce. Additionally, the nano-sized PS greatly inhibited lettuce growth and quality more than the micro-sized PS. This study described the interactions between microplastics and phthalates using molecular simulation and experimental validation to highlight the potential risks of microplastics on vegetable crop production.The development of social-cognitive abilities in infancy is subject to an intricate interaction between maturation of neural systems and environmental input. We investigated the role of infants' attachment relationship quality in shaping infants' neural responses to observed social interactions. check details One-hundred thirty 10-month-old infants participated in an EEG session while they watched animations involving a distressing separation event that ended with either comforting or ignoring behavior. Frontal asymmetry (FA) in the alpha range - which is indicative of approach-withdrawal tendencies - was measured with EEG. Attachment quality was assessed using the Strange Situation procedure at 12 months. Overall, infants with disorganized attachment showed a lack of right-sided - withdrawal related - FA compared to secure and insecure infants. Furthermore, only avoidant infants exhibited reduced right-sided FA responses following the separation. Contrary to our expectations, the type of response (comforting vs. ignoring) did not elicit differences in FA patterns, and attachment quality did not moderate the effects of the type of response on frontal asymmetry. Implications for research on attachment-related biases in social information processing and on the neural underpinnings of prosocial behaviors are discussed.Although studies of PAF in individuals with autism spectrum disorder (ASD) report group differences and associations with non-verbal cognitive ability, it is not known how PAF relates to familial risk for ASD, and whether similar associations with cognition in are present in infancy. Using a large multi-site prospective longitudinal dataset of infants with low and high familial risk for ASD, metrics of PAF at 12 months were extracted and growth curves estimated for cognitive development between 12-36 months. Analyses tested whether PAF 1) differs between low and high risk infants, 2) is associated with concurrent non-verbal/verbal cognitive ability and 3) predicts developmental change in non-verbal/verbal ability. Moderation of associations between PAF and cognitive ability by familial risk status was also tested. No differences in 12-month PAF were found between low and high risk infants. PAF was associated with concurrent non-verbal cognitive ability, but did not predict change in non-verbal cognitive over development. No associations were found between PAF and verbal ability, along with no evidence of moderation. PAF is not related to familial risk for ASD, and is a neural marker of concurrent non-verbal cognitive ability, but not verbal ability, in young infants at low and high risk for ASD.