Kilgorenichols8412

From DigitalMaine Transcription Project
Revision as of 15:42, 22 November 2024 by Kilgorenichols8412 (talk | contribs) (Created page with "This was associated with a better grain filling and compensation to the loss of grain weight. The WSC levels induced by drought stress formed a high-to-low concentration gradi...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

This was associated with a better grain filling and compensation to the loss of grain weight. The WSC levels induced by drought stress formed a high-to-low concentration gradient from the lower to the upper internodes. Presumably, it might favorably drive WSC flux from stem to developing kernels, indicative of higher WSC remobilization efficiency generally in lower internodes than in upper ones. These findings provide the well-understanding of the spatiotemporal pattern of post-anthesis WSC accumulation and remobilization along stem internodes and their roles in the wheat grain-filling process under drought stress.Nowadays, electroporation (EP) represents a promising method for the intracellular delivery of anticancer drugs. To setting up the process, the EP efficiency is usually evaluated by using cell suspension and adherent cell cultures that are not representative of the in vivo conditions. Indeed, cells are surrounded by extracellular matrix (ECM) whose composition and physical characteristics are different for each tissue. So, various three-dimensional (3D) in vitro models, such as spheroids and hydrogel-based cultures, have been proposed to mimic the tumour microenvironment. Herein, a 3D breast cancer in vitro model has been proposed. HCC1954 cells were seeded on crosslinked and lyophilized matrices composed of hyaluronic acid (HA) and ionic complementary self-assembling peptides (SAPs) already known to provide a fibrous structure mimicking collagen network. THZ1 in vitro Herein, SAPs were functionalized with laminin derived IKVAV adhesion motif. Cultures were characterized by spheroids surrounded by ECM produced by cancer cells as demonstrated by collagen1a1 and laminin B1 transcripts. EP was carried out on both 2D and 3D cultures a sequence of 8 voltage pulses at 5 kHz with different amplitude was applied using a plate electrode. Cell sensitivity to EP seemed to be modulated by the presence of ECM and the different cell organization. Indeed, cells cultured on HA-IKVAV were more sensitive than those treated in 2D and HA cultures, in terms of both cell membrane permeabilization and viability. Collectively, our results suggest that HA-IKVAV cultures may represent an interesting model for EP studies. Further studies will be needed to elucidate the influence of ECM composition on EP efficiency.Pulsed radiofrequency (PRF) treatments for chronic pain consist in the delivery of a train of sinusoidal electric bursts to the targeted nerve. Despite numerous clinical evidence of its efficiency, the mechanism of action of PRF remains unclear. Since most of the reported biological effects of PRF can be initiated by a calcium influx into the neurons, we hypothesized that PRF may induce a mild electroporation effect causing a calcium uptake. To test this hypothesis, HEK-293 cells were exposed to PRF bursts and cytosolic calcium and Yo-Pro-1 uptake were monitored. After a single burst, calcium peaks were observed for electric fields above 480 V/cm while the uptake of Yo-pro-1 was insignificant. After a train of 120 bursts, the electric fields required to induce a calcium and Yo-pro-1 uptake decreased to 330 V/cm and 880 V/cm respectively. Calcium peaks were not detected when cells were treated in calcium free media. The temperature increase during the treatments was lower than 5 °C in all cases. Finally, the cell response for different burst frequencies and extracellular media conductivities correlated with the induced transmembrane voltage calculated with a numerical model. Our results support the hypothesis of an electroporation mediated calcium influx.Ti-6Al-4V alloy has been widely investigated for biomedical applications due to its low density, high specific strength, and favorable corrosion resistance. However, some reported failures have imposed a challenge to improve bone regeneration and fixation, as well as antibacterial properties. A further opportunity for solving this problem is the introduction of porosity. However, this can induce metallic release and corrosion product formation. In this work, a Ti-6Al-4V alloy was exposed to Hank's solution, sterilized and inoculated with Staphylococcus aureus at 37 °C. Surface analysis was carried out by SEM-EDS and XPS. Electrochemical measurements were also performed using chronopotentiometry at open circuit potential, polarization curves, and electrochemical impedance spectroscopy. After exposure, FE-SEM showed some colonies of S. aureus on the sample with 22% porosity. However, XPS analysis revealed that the presence of bacterium influenced the composition of the oxide layer, even more drastically with the increase in added porosity. Moreover, the impedance analysis showed De Levie's behavior, revealing a reduction of pore resistance and modulus of the impedance in the low frequency range in inoculated medium, and polarization curves showed that the passivity potential range was decreased, whereas the passivity current increased in the presence of the S. aureus.This study presents electrical measurements (both conductivity during the pulses and impedance spectroscopy before and after) performed in liver tissue of mice during electroporation with classical electrochemotherapy conditions (8 pulses of 100 µs duration). A four-needle electrode arrangement inserted in the tissue was used for the measurements. The undesirable effects of the four-electrode geometry, notably concerning its sensitivity, were quantified and discussed showing how the electrode geometry chosen for the measurements can impact the results. Numerical modelling was applied to the information collected during the pulse, and to the impedance spectra acquired before and after the pulses sequence. Our results show that the numerical results were not consistent, suggesting that other collateral phenomena not considered in the model are at work during electroporation in vivo. We show how the modification in the volume of the intra and extra cellular media, likely caused by the vascular lock effect, could at least partially explain the recorded impedance evolution. In the present study we demonstrate the significant impact that physiological effects have on impedance changes following electroporation at the tissue scale and the potential need of introducing them into the numerical models. The code for the numerical model is publicly available at https//gitlab.inria.fr/poignard/4-electrode-system.