Thygesenterkelsen6010

From DigitalMaine Transcription Project
Revision as of 15:47, 22 November 2024 by Thygesenterkelsen6010 (talk | contribs) (Created page with "Various databases on genetically modified organisms (GMOs) exist, all with their specific focus to facilitate access to information needed for, e. g., the assistance in risk a...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Various databases on genetically modified organisms (GMOs) exist, all with their specific focus to facilitate access to information needed for, e. g., the assistance in risk assessment, the development of detection and identification strategies or inspection and control activities. Each database has its unique approach towards the subject. Often these databases use different terminology to describe the GMOs. For adequate GMO addressing and identification and exchange of GMO-related information it is necessary to use commonly agreed upon concepts and terminology.

A hierarchically structured controlled vocabulary describing the genetic elements inserted into conventional GMOs, and GMOs developed by the use of gen(om)e-editing is presented the GMO genetic element thesaurus (GMO-GET). GMO-GET can be used for GMO-related documentation, including GMO-related databases. It has initially been developed on the basis of two GMO databases, i.e. the Biosafety Clearing-House and the EUginius database.

The use of GMO-GET will enable consistent and compatible information (harmonisation), also allowing an accurate exchange of information between the different data systems and thereby facilitating their interoperability. GMO-GET can also be used to describe genetic elements that are altered in organisms obtained through current targeted genome-editing techniques.

The use of GMO-GET will enable consistent and compatible information (harmonisation), also allowing an accurate exchange of information between the different data systems and thereby facilitating their interoperability. GMO-GET can also be used to describe genetic elements that are altered in organisms obtained through current targeted genome-editing techniques.The development of genetically modified crops (GM) includes the discovery of candidate genes through bioinformatics analysis using genomics data, gene expression, and others. Proteins of unknown function (PUFs) are interesting targets for GM crops breeding pipelines for the novelty associated with such targets and also to avoid copyright protection. One method of inferring the putative function of PUFs is by relating them to factors of interest such as abiotic stresses using orthology and co-expression networks, in a guilt-by-association manner. In this regard, we have downloaded, analyzed, and processed genomics data of 53 angiosperms, totaling 1,862,010 genes and 2,332,974 RNA. Diamond and InterproScan were used to discover 72,266 PUFs for all organisms. RNA-seq datasets related to abiotic stresses were downloaded from NCBI/GEO. The RNA-seq data was used as input to the LSTrAP software to construct co-expression networks. LSTrAP also created clusters of transcripts with correlated expression, whose members are more probably related to the molecular mechanisms associated with abiotic stresses in the plants. Orthologous groups were created (OrhtoMCL) using all 2,332,974 proteins in order to associate PUFs to abiotic stress-related clusters of co-expression and therefore infer their function in a guilt-by-association manner. A freely available web resource named "Plant Co-expression Annotation Resource" ( https//www.machado.cnptia.embrapa.br/plantannot ), Plantannot, was created to provide indexed queries to search for PUF putatively associated with abiotic stresses. The web interface also allows browsing, querying, and retrieving of public genomics data from 53 plants. We hope Plantannot to be useful for researchers trying to obtain novel GM crops resistant to climate change hazards.Our previous research has shown that galanin plays an antinociceptive effect via binding to galanin receptors (GalRs) in nucleus accumbens (NAc). This study focused on the involvement of GalR2 in galanin-induced antinociceptive effect in NAc of neuropathic pain rats. The chronic constriction injury of sciatic nerve (CCI) was used to mimic neuropathic pain model. The hind paw withdrawal latency (HWL) to thermal stimulation and hind paw withdrawal threshold (HWT) to mechanical stimulation were measured as the indicators of pain threshold. The results showed that 14 and 28 days after CCI, the expression of GalR2 was up-regulated in bilateral NAc of rats, and intra-NAc injection of GalR2 antagonist M871 reversed galanin-induced increases in HWL and HWT of CCI rats. Furthermore, intra-NAc injection of GalR2 agonist M1145 induced increases in HWL and HWT at day 14 and day 28 after CCI, which could also be reversed by M871. Finally, we found that M1145-induced antinociceptive effect in NAc of CCI rats was stronger than that in intact rats. These results imply that the GalR2 is activated in the NAc from day 14 to day 28 after CCI and GalR2 is involved in the galanin-induced antinociceptive effect in NAc of CCI rats.

Osteoarthritis (OA) is the most common articular disorder, leading to joint malfunction and disability. Although the incidence of OA is increasing globally, the treatment of OA is very limited. LncRNA CIR has been implicated in OA through unclear mechanisms. Here, we investigated the role of lncRNA CIR in chondrogenic differentiation.

Human umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) were obtained from human umbilical cords. Flow cytometry was used to analyze the surface markers of hUC-MSCs. Various culture conditions and corresponding staining assays were employed to assess the differentiation abilities of hUC-MSC. qRT-PCR, western blot, and immunostaining were used to measure expression levels of related genes and proteins such as lncRNA CIR, ATOH8, EZH2, and H3K27me3. this website RNA immunoprecipitation assay, biotin pull-down, and chromatin immunoprecipitaion assay were performed to analyze the interactions of lncRNA CIR, EZH2, H3K27me3 and ATOH8 promoter.

hUC-MSCs exhibited MSCs features and could differentiate into chondrocytes under specific conditions. LncRNA CIR was downregulated while ATOH8 was upregulated during the chondrogenic differentiation of hUC-MSCs. Knockdown lncRNA CIR or overexpression of ATOH8 promoted chondrogenic differentiation. Further, lncRNA CIR bound to EZH2 and repressed ATOH8 expression via EZH2-mediated H3K27me3, which promotes the methylation of ATOH8. Inhibition of ATOH8 reversed the effects of knockdown lncRNA CIR on chondrogenic differentiation.

LncRNA CIR suppresses chondrogenic differentiation of hUC-MSCs. Mechanistically, lncRNA CIR could inhibit ATOH8 expression that functions to promote chondrogenic differentiation through EZH2-mediated epigenetic modifications.

LncRNA CIR suppresses chondrogenic differentiation of hUC-MSCs. Mechanistically, lncRNA CIR could inhibit ATOH8 expression that functions to promote chondrogenic differentiation through EZH2-mediated epigenetic modifications.