Haagensenmaxwell0767

From DigitalMaine Transcription Project
Revision as of 16:22, 22 November 2024 by Haagensenmaxwell0767 (talk | contribs) (Created page with "Nine salinity tolerance-related traits, including the salt injury score, chlorophyll and water content, and K+ and Na+ contents were measured in leaves. GWAS analysis allowed...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Nine salinity tolerance-related traits, including the salt injury score, chlorophyll and water content, and K+ and Na+ contents were measured in leaves. GWAS analysis allowed the identification of 26 QTLs. Interestingly, ten of them were associated with several different traits, which indicates that these QTLs act pleiotropically to control the different levels of plant responses to salinity stress. Twenty-one identified QTLs colocalized with known QTLs. Several genes within these QTLs have functions related to salinity stress tolerance and are mainly involved in gene regulation, signal transduction or hormone signaling. Our study provides promising QTLs for breeding programs to enhance salinity tolerance and identifies candidate genes that should be further functionally studied to better understand salinity tolerance mechanisms in rice.The article presents the results of original and relevant tests from the point of view of using self-compacting concrete admixtures, especially their compatibility with the cement and mutual compatibility in the case of using several admixtures in one mixture. The research contributes to the recognition of the effect of an unintentionally air-entraining superplasticiser (SP), anti-foam (AFA), viscosity-modifying (VMA) and air-entraining (AEA) admixtures on the internal frost resistance and compressive strength of self-compacting concrete. Positive and undesirable effects of the combined use of several admixtures in this area have not been the subject of extensive analyses and publications so far. Superplasticiser, which unintentionally introduced a large amount of air to the concrete mixture, had a negative effect on the strength of the concrete and a positive effect on frost resistance. The addition of AFA to such concrete did not change the strength but worsened the values of the parameters estimating frost resistance. The AEA admixture resulted in a decrease in the strength of concrete but contributed to a change in the tendency to weaken the frost resistance observed in non-air-entrained concrete. The article also deals with the problem of compliance of the frost resistance criteria estimated upon various measures. AB680 concentration It may be disturbing that finding frost resistance based on one criterion does not always mean frost resistance on another criterion. The discrepancies can be significant and misleading.The effects of cathodic polarisation switch-off on the passivation of AISI 304L stainless steel in air and its crevice corrosion susceptibility in 3.5 wt.% NaCl aqueous electrolyte were investigated. Scanning Kelvin probe (SKP) data showed that the oxide film is significantly destabilised and the rate of steel passivation in air is slowed down. Thermal desorption analysis (TDA) highlighted that hydrogen absorption is proportional to the applied cathodic current density. A special crevice corrosion set-up was designed to realise simultaneous reproducible monitoring of potential and galvanic current to study the impact of prior cathodic polarisation on crevice corrosion onset.Understanding the rapid solidification behavior characteristics, nucleation undercooling, and nucleation mechanism is important for modifying the microstructures and properties of metal alloys. In order to investigate the rapid solidification behavior in-situ, accurate measurements of nucleation undercooling and cooling rate are required in most rapid solidification processes, e.g., in additive manufacturing (AM). In this study, differential fast scanning calorimetry (DFSC) was applied to investigate the nucleation kinetics in a single micro-sized Al-20Si (mass%) particle under a controlled cooling rate of 5000 K/s. The nucleation rates of primary Si and secondary α-Al phases were calculated by a statistical analysis of 300 identical melting/solidification experiments. Applying a model based on the classical nucleation theory (CNT) together with available thermodynamic data, two different heterogeneous nucleation mechanisms of primary Si and secondary α-Al were proposed, i.e., surface heterogeneous nucleation for primary Si and interface heterogenous nucleation for secondary α-Al. The present study introduces a practical method for a detailed investigation of rapid solidification behavior of metal particles to distinguish surface and interface nucleation.Spraying roads with water on a large scale in Chinese cities is one of the supplementary precaution or mitigation actions implemented to control severe air pollution events or heavy haze-fog events in which the mechanisms causing them are not yet fully understood. These air pollution events were usually characterized by higher air humidity. Therefore, there may be a link between this action and air pollution. In the present study, the impact of water spraying on the PM2.5 concentration and humidity in air was assessed by measuring chemical composition of the water, undertaking a simulated water spraying experiment, measuring residues and analyzing relevant data. We discovered that spraying large quantities of tap or river water on the roads leads to increased PM2.5 concentration and humidity, and that daily continuous spraying produces a cumulative effect on air pollution. Spraying the same amount of water produces greater increases in humidity and PM2.5 concentration during cool autumn and winter than during hot summer. Our results demonstrate that spraying roads with water increases, rather than decreases, the concentration of PM2.5 and thus is a new source of anthropogenic aerosol and air pollution. The higher vapor content and resultant humidity most likely create unfavorable meteorological conditions for the dispersion of air pollution in autumn and winter with low temperature.This research presents a new technique using pulse echo ultrasound for sizing foreign objects within carbon fiber laminates. Carbon fiber laminates are becoming increasingly popular in a wide variety of industries for their desirable properties. It is not uncommon for manufacturing defects to occur within a carbon fiber laminates, causing waste, either in the discarding of failed parts or the overdesign of the initial part to account for these anticipated and undetected errors. One such manufacturing defect is the occurrence of a foreign object within the laminate. This defect will lead to a localized weakness within the laminate including, but not limited to, stress risers, delamination, and catastrophic failure. This paper presents a method to analyze high-resolution c-scan full waveform captured data to automatically capture the geometry of the foreign object with minimal user inputs without a-priori knowledge of the shape of the defect. This paper analyzes twelve samples, each a twelve-lamina carbon fiber laminate.