Malikzacho8011
Testosterone supplementation during energy deficit promotes whole body lean mass accretion, but the mechanisms underlying that effect remain unclear. To elucidate those mechanisms, skeletal muscle molecular adaptations were assessed from muscle biopsies collected before, 1 h, and 6 h after exercise and a mixed meal (40 g protein, 1 h postexercise) following 14 days of weight maintenance (WM) and 28 days of an exercise- and diet-induced 55% energy deficit (ED) in 50 physically active nonobese men treated with 200 mg testosterone enanthate/wk (TEST) or placebo (PLA) during the ED. Participants (n = 10/group) exhibiting substantial increases in leg lean mass and total testosterone (TEST) were compared with those exhibiting decreases in both of these measures (PLA). Resting androgen receptor (AR) protein content was higher and fibroblast growth factor-inducible 14 (Fn14), IL-6 receptor (IL-6R), and muscle ring-finger protein-1 gene expression was lower in TEST vs. PLA during ED relative to WM (P less then 0.05). Changes in inflammatory, myogenic, and proteolytic gene expression did not differ between groups after exercise and recovery feeding. Mechanistic target of rapamycin signaling (i.e., translational efficiency) was also similar between groups at rest and after exercise and the mixed meal. Muscle total RNA content (i.e., translational capacity) increased more during ED in TEST than PLA (P less then 0.05). These findings indicate that attenuated proteolysis at rest, possibly downstream of AR, Fn14, and IL-6R signaling, and increased translational capacity, not efficiency, may drive lean mass accretion with testosterone administration during energy deficit.Our objective was to explore the physiological role of the intestinal endocannabinoids in the regulation of appetite upon short-term exposure to high-fat-diet (HFD) and understand the mechanisms responsible for aberrant gut-brain signaling leading to hyperphagia in mice lacking Napepld in the intestinal epithelial cells (IECs). We generated a murine model harboring an inducible NAPE-PLD deletion in IECs (NapepldΔIEC). After an overnight fast, we exposed wild-type (WT) and NapepldΔIEC mice to different forms of lipid challenge (HFD or gavage), and we compared the modification occurring in the hypothalamus, in the vagus nerve, and at endocrine level 30 and 60 min after the stimulation. NapepldΔIEC mice displayed lower hypothalamic levels of N-oleoylethanolamine (OEA) in response to HFD. Lower mRNA expression of anorexigenic Pomc occurred in the hypothalamus of NapepldΔIEC mice after lipid challenge. This early hypothalamic alteration was not the consequence of impaired vagal signaling in NapepldΔIEC mice. Following lipid administration, WT and NapepldΔIEC mice had similar portal levels of glucagon-like peptide-1 (GLP-1) and similar rates of GLP-1 inactivation. Administration of exendin-4, a full agonist of GLP-1 receptor (GLP-1R), prevented the hyperphagia of NapepldΔIEC mice upon HFD. We conclude that in response to lipid, NapepldΔIEC mice displayed reduced OEA in brain and intestine, suggesting an impairment of the gut-brain axis in this model. We speculated that decreased levels of OEA likely contributes to reduce GLP-1R activation, explaining the observed hyperphagia in this model. Altogether, we elucidated novel physiological mechanisms regarding the gut-brain axis by which intestinal NAPE-PLD regulates appetite rapidly after lipid exposure.As a basic member of the Class III histone deacetylases, SIRT1 has been implicated in the occurrence and progression of diabetic retinopathy (DR). The current study aimed to investigate the roles of SIRT1/miR-20a/Yse-associated protein (YAP)/hypoxia-inducible factor 1 α (HIF1α)/vascular endothelial growth factor A (VEGFA) in DR. The expression of SIRT1 was initially determined through quantitative RT-PCR and Western blot analysis following the successful establishment of a DR mouse model, followed by detection of SIRT1 catalytic activity. Retinal microvascular endothelial cells (RMECs) were cultured in media supplemented with normal glucose (NG) or high glucose (HG). Thereafter, SIRT1 was either silenced or overexpressed in RMECs, after which EdU staining and Matrigel-based tube formation assay were performed to assess cell proliferation and tube formation. The binding relationship between YAP, HIF1α, and VEGFA was further illustrated using dual-luciferase reporter assay. Preretinal neovascular cell number was tallied with the IB4-positive vascular endothelial cells, as determined by immunofluorescence. SIRT1 was poorly expressed in mice with DR and HG-treated RMECs with low catalytic activity. The proliferation and tube formation capabilities of RMECs were elevated under HG conditions, which could be reversed following overexpression of SIRT1. SIRT1 was identified as positively regulating the expression of miR-20a with YAP detected as the key target gene of miR-20a. Fosbretabulin clinical trial Our data suggested that YAP could upregulate VEGFA via induction of HIF1α. Moreover, SIRT1 overexpression strongly repressed RMEC proliferation and angiogenesis, which could be reversed via restoration of YAP/HIF1α/VEGFA expression. Taken together, the key findings of our study suggest that upregulation of SIRT1 inhibits the development of DR via miR-20a-induced downregulation of YAP/HIF1α/VEGFA.Mitochondrial-derived peptides (MDPs) are small bioactive peptides encoded by short open-reading frames (sORF) in mitochondrial DNA that do not necessarily have traditional hallmarks of protein-coding genes. To date, eight MDPs have been identified, all of which have been shown to have various cyto- or metaboloprotective properties. The 12S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas the other seven MDPs [humanin and small humanin-like peptides (SHLP) 1-6] are encoded by the 16S ribosomal RNA gene. Here, we review the evidence that endogenous MDPs are sensitive to changes in metabolism, showing that metabolic conditions like obesity, diabetes, and aging are associated with lower circulating MDPs, whereas in humans muscle MDP expression is upregulated in response to stress that perturbs the mitochondria like exercise, some mtDNA mutation-associated diseases, and healthy aging, which potentially suggests a tissue-specific response aimed at restoring cellular or mitochondrial homeostasis.