Campmcdowell7677

From DigitalMaine Transcription Project
Revision as of 16:37, 22 November 2024 by Campmcdowell7677 (talk | contribs) (Created page with "Histological analysis indicated that NFP significantly alleviated the accumulation of Aβ, neuroinflammation, neuronal loss, and mitochondrial dysfunction in the subiculum of...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Histological analysis indicated that NFP significantly alleviated the accumulation of Aβ, neuroinflammation, neuronal loss, and mitochondrial dysfunction in the subiculum of 5XFAD mouse model of AD. In addition, NFP treatment ameliorated mitochondrial deficits in Aβ-treated HT22 cells. Moreover, NFP treatment significantly increased the AHN and neuritogenesis of neural stem cells in both healthy and AD brains. Furthermore, NFP significantly increased cell proliferation in the HT22 cells. Finally, NFP administration significantly enhanced and restored the cognitive function of healthy and AD mice, respectively. Taken together, NFP treatment demonstrated changes in proteins involved in central nervous system organization/maintenance in aged brain and ameliorates AD pathology. Collectively, our findings suggest that NFP from KRG could be a potential therapeutic candidate for aging and AD treatments.Alzheimer's disease (AD) is the most common form of age-associated dementia. Several studies have predicted that AD is caused by the production and deposition of the β-amyloid peptide (Aβ) in the brain, which is one of pathologic hallmarks of AD. In particular, Aβ oligomers are reportedly the most toxic and pathogenic of other peptide forms. We previously developed Multimer Detection System-Oligomeric Amyloid-β (MDS-OAβ), a technique for measuring Aβ oligomerization in plasma to diagnose AD. Here, we clarified the molecular sizes of oligomers that can be detected by the MDS and investigated differences in plasma spiking with a synthetic Aβ peptide in the plasma of AD patients and individuals with non-AD neurological conditions. To determine Aβ oligomer sizes detectable by MDS, size exclusion chromatography (SEC) was first performed on incubated samples of synthetic Aβ42 peptides. As a result, no MDS signals were observed for the Aβ42 monomer fractions, but strong signals were found for oligomers of 7-35-mers long. Also, an amplified luminescent proximity homogeneous assay-linked immunoassay (AlphaLISA) was used to confirm that synthetic Aβ peptides not only recruited endogenous Aβ in plasma but also induced significantly stronger seeding in AD plasma than in healthy control plasma. In addition, the absence of the MDS signals in Aβ-depleted plasma confirmed that the increased oligomerization tendency in AD plasma is dependent on the presence of endogenous Aβ in plasma. Therefore, the MDS-OAβ measurement of oligomerization differences in plasma after incubation with spiked synthetic Aβ peptides has significant potential in AD diagnosis.Iron has a key role in the activation of the autophagic pathway in rats with intracerebral hemorrhage (ICH), and hepcidin has the ability to reduce brain iron in ICH-rats. Propionyl-L-carnitine We therefore hypothesized that hepcidin might be able to inhibit autophagy by reducing iron in an ICH brain. Here, we investigated the effects of Ad-hepcidin and/or hepcidin peptide on autophagic activities in ICH models in vitro and in vivo. We demonstrated that ad-hepcidin and hepcidin peptide both inhibited hemin-induced increase in LC3-II/LC3-I conversion ratio and reversed the reduction in p62 content in cortical neurons in vitro. We also showed that ad-hepcidin inhibited ICH-induced increase in LC3-II/LC3-I conversion ratio and reversed ICH-induced reduction in p62 content in the brain cortex of rats in vivo. Based on these findings plus previous data on the effects of ad-hepcidin and/or hepcidin peptide on iron contents in ICH models, we suggested that hepcidin-induced inhibition of autophagy might be mediated via reducing iron in hemin-treated neurons in vitro and ICH-rat brain in vivo.Peripheral nerve injuries remain challenging to treat despite extensive research on reparative processes at the injury site. Recent studies have emphasized the importance of immune cells, particularly macrophages, in recovery from nerve injury. Macrophage plasticity enables numerous functions at the injury site. At early time points, macrophages perform inflammatory functions, but at later time points, they adopt pro-regenerative phenotypes to support nerve regeneration. Research has largely been limited, however, to the injury site. The neuromuscular junction (NMJ), the synapse between the nerve terminal and end target muscle, has received comparatively less attention, despite the importance of NMJ reinnervation for motor recovery. Macrophages are present at the NMJ following nerve injury. Moreover, in denervating diseases, such as amyotrophic lateral sclerosis (ALS), macrophages may also play beneficial roles at the NMJ. Evidence of positive macrophages roles at the injury site after peripheral nerve injury and at the NMJ in denervating pathologies suggest that macrophages may promote NMJ reinnervation. In this review, we discuss the intersection of nerve injury and immunity, with a focus on macrophages.Phosphoglucose isomerases (PGIs) belong to a class of enzymes that catalyze the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate. PGIs are crucial in glycolysis and gluconeogenesis pathways and proposed as serving additional extracellular functions in eukaryotic organisms. The phosphoglucose isomerase function of TM1385, a previously uncharacterized protein from Thermotoga maritima, was hypothesized based on structural similarity to established PGI crystal structures and computational docking. Kinetic and colorimetric assays combined with 1H nuclear magnetic resonance (NMR) spectroscopy experimentally confirm that TM1385 is a phosphoglucose isomerase (TmPGI). Evidence of solvent exchange in 1H NMR spectra supports that TmPGI isomerization proceeds through a cis-enediol-based mechanism. To determine which amino acid residues are critical for TmPGI catalysis, putative active site residues were mutated with alanine and screened for activity. Results support that E281 is most important for TmPGI formation of the cis-enediol intermediate, and the presence of either H310 or K422 may be required for catalysis, similar to previous observations from homologous PGIs. However, only TmPGI E281A/Q415A and H310A/K422A double mutations abolished activity, suggesting that there are redundant catalytic residues, and Q415 may participate in sugar phosphate isomerization upon E281 mutation. Combined, we propose that TmPGI E281 participates directly in the cis-enediol intermediate step, and either H310 or K422 may facilitate sugar ring opening and closure.