Estesogden7188

From DigitalMaine Transcription Project
Revision as of 16:45, 22 November 2024 by Estesogden7188 (talk | contribs) (Created page with "liable PBs to create new PG monitoring-friendly TPs. Comparison between our PB boosting method and the alternative PB aggregation, which combines the signal of nearby PBs to r...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

liable PBs to create new PG monitoring-friendly TPs. Comparison between our PB boosting method and the alternative PB aggregation, which combines the signal of nearby PBs to reach the desired counting statistics, is also discussed.We analyse the electrical and optical properties of single GaN nanowire p-n junctions grown by plasma-assisted molecular-beam epitaxy using magnesium and silicon as doping sources. Different junction architectures having either a n-base or a p-base structure are compared using optical and electrical analyses. Electron-beam induced current (EBIC) microscopy of the nanowires shows that in the case of a n-base p-n junction the parasitic radial growth enhanced by the magnesium (Mg) doping leads to a mixed axial-radial behaviour with strong wire-to-wire fluctuations of the junction position and shape. By reverting the doping order p-base p-n junctions with a purely axial well-defined structure and a low wire-to-wire dispersion are achieved. The good optical quality of the top n nanowire segment grown on a p-doped stem is preserved. A hole concentration in the p-doped segment exceeding 1018 cm-3 was extracted from EBIC mapping and photoluminescence analyses. This high concentration is reached without degrading the nanowire morphology.Rheological properties of a material often require to be probed under extensional deformation. Examples include fibrous materials such as spider-silk, high-molecular weight polymer melts, and the contractile response of living cells. Such materials have strong molecular-level anisotropies which are either inherent or are induced by an imposed extension. However, unlike shear rheology, which is well-established, techniques to perform extensional rheology are currently under development and setups are often custom-designed for the problem under study. In this article, we present a versatile device that can be used to conduct extensional deformation studies of samples at microscopic scales with simultaneous imaging. We discuss the operational features of this device and present a number of applications.Milling of 2D flakes is a simple method to fabricate nanomaterial of any desired shape and size. Inherently milling process can introduce the impurity or disorder which might show exotic quantum transport phenomenon when studied at the low temperature. Here we report temperature dependent weak antilocalization (WAL) effects in the sculpted nanowires of topological insulator in the presence of perpendicular magnetic field. The quadratic and linear magnetoconductivity (MC) curves at low temperature (>2 K) indicate the bulk contribution in the transport. A cusp feature in magnetoconductivity curves (positive magnetoresistance) at ultra low ( less then 1 K) temperature and at magnetic field ( less then 1 T) represent the WAL indicating the transport through surface states. The MC curves are discussed by using the 2D Hikami-Larkin-Nagaoka theory. The cross-over/interplay nature of positive and negative magnetoresistance observed in the MR curve at ultra-low temperature. Our results indicate that transport through topological surface states (TSS) in sculpted nanowires of Bi2Te3 can be achieved at mK range and linear MR observed at ∼2 K could be the coexistence of electron transport through TSS and contribution from the bulk band.4D CT imaging is a cornerstone of 4D radiotherapy treatment. Clinica 4D CT data are, however, often affected by severe artifacts. The artifacts are mainly caused by breathing irregularity and retrospective correlation of breathing phase information and acquired projection data, which leads to insufficient projection data coverage to allow for proper reconstruction of 4D CT phase images. The recently introduced 4D CT approach i4DCT (intelligent 4D CT sequence scanning) aims to overcome this problem by breathing signal-driven tube control. The present motion phantom study describes the first in-depth evaluation of i4DCT in a real-world scenario. 28 4D CT breathing curves of lung and liver tumor patients with pronounced breathing irregularity were selected to program the motion phantom. For every motion pattern, 4D CT imaging was performed with i4DCT and a conventional spiral 4D C mode. For qualitative evaluation, the reconstructed 4D CT images were presented to clinical experts, who scored image quality. Further quantitative evaluation was based on established image intensity-based artifact metrics to measure (dis)similarity of neighboring image slices. In addition, beam-on and scan times of the scan modes were analyzed. The expert rating revealed a significantly higher image quality for the i4DCT data. The quantitative evaluation further supported the qualitative While 20% of the slices of the conventional spiral 4D CT images were found to be artifact-affected, the corresponding fraction was only 4% for i4DCT. Gemcitabine manufacturer The beam-on time (surrogate of imaging dose) did not significantly differ between i4DCT and spiral 4D CT. Overall i4DCT scan times (time between first beam-on and last beam-on event, including scan breaks to compensate for breathing irregularity) were, on average, 53% longer compared to spiral CT. Thus, the results underline that i4DCT significantly improves 4D CT image quality compared to standard spiral CT scanning in the case of breathing irregularity during scanning.To construct a microscopic theory of electrons and holes in anisotropic conductors that self-consistently treats their band effective mass anisotropy with their interactions with applied electric and magnetic fields, the Dirac equation is extended for an electron or hole in an orthorhombically-anisotropic conduction band. Its covariance is established both by a modified version of the Klemm-Clem transformations to a space in which it is isotropic, and also in its fully anisotropic form by making the most general proper and improper Lorentz transformations, proving its validity in both the relativistic and non-relativistic limits. The appropriate Foldy-Wouthuysen transformations are extended to expand about the non-relativistic Hamiltonian limit to fourth order in the inverse of the particle's Einstein rest energy. The results have important consequences for magnetic measurements of many classes of clean anisotropic semiconductors, metals, and superconductors. In all of these cases, the Zeeman interaction is found to depend strongly upon the effective mass anisotropy.