Hardinduke8557

From DigitalMaine Transcription Project
Revision as of 16:45, 22 November 2024 by Hardinduke8557 (talk | contribs) (Created page with "Commercial deployment of thermophotovoltaics (TPV) is lacking behind the implementation of solar PV technology due to limited thermal stability of the selective emitter struct...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Commercial deployment of thermophotovoltaics (TPV) is lacking behind the implementation of solar PV technology due to limited thermal stability of the selective emitter structures. Most of the TPV emitters demonstrated so far are designed to operate under high vacuum conditions (~10-6 mbar vacuum pressure), whereas under medium vacuum conditions (~10-2 mbar vacuum pressure), which are feasible in technical implementations of TPV, these emitters suffer from oxidation due to significant O2 partial pressure. In this work, the thermal stability of 1D refractory W-HfO2 based multilayered metamaterial emitter structure is investigated under different vacuum conditions. The impact of the O2 partial pressure on thermal stability of the emitters is experimentally quantified. We show that, under medium vacuum conditions, i.e. ~10-2 mbar vacuum pressure, the emitter shows unprecedented thermal stability up to 1300 °C when the residual O2 in the annealing chamber is minimized by encapsulating the annealing chamber with Ar atmosphere. This study presents a significant step in the experimental implementation of high temperature stable emitters under medium vacuum conditions, and their potential in construction of economically viable TPV systems. The high TPV efficiency, ~50% spectral efficiency for GaSb PV cell at 1300 °C, and high temperature stability make this platform well suited for technical application in next-generation TPV systems.Various carbon materials have been fabricated for use as catalyst supports, carriers, adsorbents, and electrodes as well as in other advanced applications. The performances of carbon materials in such applications can be improved by adjusting their physical properties, especially their nanostructures. MK-0159 in vivo The determination of the carbon nanostructure is thus considerably important. Reverse Monte Carlo and hybrid reverse Monte Carlo simulations, which are used to analyze the diffraction patterns of carbon materials, can be used to obtain nanostructure images. Here, we describe a new approach to carbon nanostructure investigation, namely, hybrid reverse molecular dynamics (HRMD) simulation. This approach has the advantage that all of the carbon atoms move toward probable carbon structures by force fields to adapt a simulated diffraction pattern to an experimental one, in contrast to the random movements in reverse Monte Carlo and hybrid reverse Monte Carlo simulations. HRMD simulation also prevents the formation of inappropriate structures.Periphyton (viz. algal) growth in many freshwater systems is associated with severe eutrophication that can impair productive and recreational use of water by billions of people. However, there has been limited analysis of periphyton growth at a global level. To predict where nutrient over-enrichment and undesirable periphyton growth occurs, we combined several databases to model and map global dissolved and total nitrogen (N) and phosphorus (P) concentrations, climatic and catchment characteristics for up to 1406 larger rivers that were analysed between 1990 and 2016. We predict that 31% of the global landmass contained catchments may exhibit undesirable levels of periphyton growth. Almost three-quarters (76%) of undesirable periphyton growth was caused by P-enrichment and mapped to catchments dominated by agricultural land in North and South America and Europe containing 1.7B people. In contrast, undesirable periphyton growth due to N-enrichment was mapped to parts of North Africa and parts of the Middle East and India affecting 280 M people. The findings of this global modelling approach can be used by landowners and policy makers to better target investment and actions at finer spatial scales to remediate poor water quality owing to periphyton growth.Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with oxidative injury and pathogenic inflammation. RSV impairs antioxidant responses by increasing the degradation of transcription factor NRF2, which controls the expression of several antioxidant enzyme (AOE) genes, including catalase. Since catalase is a key enzyme for the dismutation of virus-mediated generation of hydrogen peroxide (H2O2) we developed a model of intranasal supplementation of polyethylene glycol-conjugated catalase (PG-CAT) for RSV-infected mice. The results of our study show that PG-CAT supplementation was able to increase specific enzymatic activity along with reduction in H2O2 in the airways and had a significant protective effect against RSV-induced clinical disease and airway pathology. PG-CAT treated mice showed amelioration in airway obstruction, reduction in neutrophil elastase and inflammation. Improved airway hyperresponsiveness was also observed in mice that received PG-CAT as a treatment post-viral inoculation. In addition, PG-CAT greatly reduced the concentration of inflammatory cytokines and chemokines, including IL-1, TNF-α, IL-9, CXCL1, CCL2, and CCL5 in the bronchoalveolar lavage fluid of RSV-infected mice, without increasing viral replication in the lung. In conclusion, catalase supplementation may represent a novel pharmacologic approach to be explored in human for prevention or treatment of respiratory infections caused by RSV.Acid-base homeostasis is critical for normal growth, development, and hearing function. The sodium-hydrogen exchanger 6 (NHE6), a protein mainly expressed in early and recycling endosomes, plays an important role in regulating organellar pH. Mutations in NHE6 cause complex, slowly progressive neurodegeneration. Little is known about NHE6 function in the mouse cochlea. Here, we found that all NHE isoforms were expressed in wild-type (WT) mouse cochlea. Nhe6 knockout (KO) mice showed significant hearing loss compared to WT littermates. Immunohistochemistry in WT mouse cochlea showed that Nhe6 was localized in the organ of Corti (OC), spiral ganglion (SG), stria vascularis (SV), and afferent nerve fibres. The middle and the inner ears of WT and Nhe6 KO mice were not different morphologically. Given the putative role of NHE6 in early endosomal function, we examined Rab GTPase expression in early and late endosomes. We found no change in Rab5, significantly lower Rab7, and higher Rab11 levels in the Nhe6 KO OC, compared to WT littermates.