Francocaldwell8852

From DigitalMaine Transcription Project
Revision as of 16:55, 22 November 2024 by Francocaldwell8852 (talk | contribs) (Created page with "An antibody dependent cellular phagocytosis (ADCP) assay revealed substantial ADCP activity for one of the cross-reactive mAbs. Epitope mapping of the neutralizing mAbs via es...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

An antibody dependent cellular phagocytosis (ADCP) assay revealed substantial ADCP activity for one of the cross-reactive mAbs. Epitope mapping of the neutralizing mAbs via escape mutant virus generation revealed a shared binding epitope on VP1 of RV-A15 for several neutralizing mAbs. The epitope of the ADCP-active, non-neutralizing mAb was determined by microarray analysis of peptides generated from the VP1 capsid protein. VP1-specific, cross-reactive antibodies, especially those with ADCP activity, could contribute to protection against RV infections.Baiyacha (BYC) is a kind of wild tea plant growing and utilizing in the remote mountain area of Fujian province, Southeastern China. However, scientific studies on this plant remain limited. Our results showed that BYC exhibits the typical morphological characteristics of Camellia gymnogyna Chang, a closely related species of C. sinensis (L.) O. Kuntze, which was not found in Fujian before. Chemical profiling revealed that parts of BYC plants are rich in purine alkaloids and catechins, especially featuring high levels of theacrine and 3″-methyl-epigallocatechin gallate (EGCG3″Me), chemical compounds with multiple biological activities that are rarely observed in regular tea plants. The contents of EGCG3″Me and theacrine in BYC both increased with the leaf maturity of tea shoots, whereas the caffeine content decreased significantly. The obtained results provide abundant information about the morphology and chemical compounds of BYC and may be used for tea production, breeding, and scientific research in the future.Atlantic cod (Gadus morhua) is one of the most important fish species in northern Europe for several reasons including its predator status in marine ecosystems, its historical role in fisheries, its potential in aquaculture and its strong public profile. However, due to over-exploitation in the North Atlantic and changes in the ecosystem, many cod populations have been reduced in size and genetic diversity. Cod populations in the Baltic Proper, Kattegat and North Sea have been analyzed using a species specific single nucleotide polymorphism (SNP) array. Using a subset of 8,706 SNPs, moderate genetic differences were found between subdivisions in three traditionally delineated cod management stocks Kattegat, western and eastern Baltic. However, an FST measure of population differentiation based on allele frequencies from 588 outlier loci for 2 population groups, one including 5 western and the other 4 eastern Baltic populations, indicated high genetic differentiation. In this paper, differentiation has been demonstrated not only between, but also within western and eastern Baltic cod stocks for the first time, with salinity appearing to be the most important environmental factor influencing the maintenance of cod population divergence between the western and eastern Baltic Sea.Autonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for 'selfish' traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts. Remarkably, one canine mtDNA haplotype, A1d1a, has repeatedly and recently colonised CTVT cells, recurrently replacing incumbent CTVT haplotypes. An A1d1a control region polymorphism predicted to influence transcription is fixed in the products of an A1d1a recombination event and occurs somatically on other CTVT mtDNA backgrounds. We present a model whereby 'selfish' positive selection acting on a regulatory variant drives repeated fixation of A1d1a within CTVT cells.Chronic NF-κB activation in inflammation and cancer has long been linked to persistent activation of NF-κB-responsive gene promoters. However, NF-κB factors also massively bind to gene bodies. Here, we demonstrate that recruitment of the NF-κB factor RELA to intragenic regions regulates alternative splicing upon NF-κB activation by the viral oncogene Tax of HTLV-1. Integrative analyses of RNA splicing and chromatin occupancy, combined with chromatin tethering assays, demonstrate that DNA-bound RELA interacts with and recruits the splicing regulator DDX17, in an NF-κB activation-dependent manner. Tofacitinib This leads to alternative splicing of target exons due to the RNA helicase activity of DDX17. Similar results were obtained upon Tax-independent NF-κB activation, indicating that Tax likely exacerbates a physiological process where RELA provides splice target specificity. Collectively, our results demonstrate a physical and direct involvement of NF-κB in alternative splicing regulation, which significantly revisits our knowledge of HTLV-1 pathogenesis and other NF-κB-related diseases.According to the first and second laws of thermodynamics and the definitions of work and heat, microscopic expressions for the non-equilibrium entropy production have been achieved. Recently, a redefinition of heat has been presented in [Nature Communications volume 8, Article number 2180 (2017)]. Since thermal operations play an important role in the resource theory of thermodynamics, it would be very interesting to find out the effect of the above-mentioned definition on the expression of the entropy production for these kind of operations. This is one of the aims of the present paper. Using the new definition of heat, it is shown that the entropy production is the same as the mutual information between a system and a bath both for thermal operations and, if the system-bath initial state is factorized, for entropy-preserving operations. It is also discussed that how one can recognize the type of the correlation between a system and a bath through knowledge of the initial state of the system only. It is shown that if the initial state of a system is diagonal in the energy basis, the thermal operations cannot create a quantum correlation between the system and the bath, however, if the system initial state is coherent Gibbs state, there cannot be classical correlation due to the thermal operations.