Buggereed7363

From DigitalMaine Transcription Project
Revision as of 17:11, 22 November 2024 by Buggereed7363 (talk | contribs) (Created page with "Fenclorim (Fen) is a safener developed for pretilachlor (Pre) that can protect rice from injury caused by Pre but does not lower the weed control effects of Pre. Unfortunately...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Fenclorim (Fen) is a safener developed for pretilachlor (Pre) that can protect rice from injury caused by Pre but does not lower the weed control effects of Pre. Unfortunately, the mechanism of selective action of Fen between rice and weeds, such as Echinochloa crusgalli (barnyard grass), has not been clarified. p38 MAPK apoptosis In this study, the differences in physiology, biochemistry, and gene transcription between rice and E. crusgalli response to Fen were compared. Comparing the protection effects of Fen on plant growth, it was found that Fen significantly protected rice from Pre, but did not protect E. crusgalli. The detection of malondialdehyde (MDA) content and activities of antioxidant enzymes showed that Pre induced significant oxidative damage both in rice and E. crusgalli; however, Fen reduced oxidative damage in rice but not in E. crusgalli. Transcriptome analysis revealed that Fen induced more genes related to herbicide metabolism in rice than in E. crusgalli, especially the glutathione-S-transferase (GST) genes, with six upregulated in rice but no genes upregulated in E. crusgalli. Accordingly, the GST activity analysis showed that Fen increased the activity of rice instead of E. crusgalli. These results indicate that the elevation of detoxifying enzyme activities and antioxidative defense may be the mechanism of selective action of Fen in rice but not in E. crusgalli.The need for safer pain-management therapies with decreased abuse liability inspired a novel drug design that retains μ-opioid receptor (MOR)-mediated analgesia, while minimizing addictive liability. We recently demonstrated that targeting the dopamine D3 receptor (D3R) with highly selective antagonists/partial agonists can reduce opioid self-administration and reinstatement to drug seeking in rodent models without diminishing antinociceptive effects. The identification of the D3R as a target for the treatment of opioid use disorders prompted the idea of generating a class of ligands presenting bitopic or bivalent structures, allowing the dual-target binding of the MOR and D3R. Structure-activity relationship studies using computationally aided drug design and in vitro binding assays led to the identification of potent dual-target leads (23, 28, and 40), based on different structural templates and scaffolds, with moderate (sub-micromolar) to high (low nanomolar/sub-nanomolar) binding affinities. Bioluminescence resonance energy transfer-based functional studies revealed MOR agonist-D3R antagonist/partial agonist efficacies that suggest potential for maintaining analgesia with reduced opioid-abuse liability.Nanoparticles with ultrasmall sizes (less than 10 nm) offer many advantages in biomedical applications compared to their bigger counterparts, including better intratumoral distribution, improved pharmacokinetics (PK), and efficient body clearance. When functionalized with a biocompatible coating and a target-specific antibody, ultrasmall nanoparticles represent an attractive clinical translation platform. Although there is a tremendous body of work dedicated to PK and the biological effects of various nanoparticles, little is known about the fate of different components of functionalized nanoparticles in a biological environment such as in live cells. Here, we used luminescence properties of 5 nm gold nanoparticles (AuNPs) to study the intracellular trafficking and fate of the AuNPs functionalized with an organic layer consisting of a polyethylene glycol (PEG) coating and epidermal growth factor receptor (EGFR)-targeting antibody. We showed that intracellular uptake of the targeted 5 nm AuNPs results in a strong two-photon luminescence (TPL) that is characterized by broad emission and very short lifetimes compared to the fluorescence of the nanoparticle-conjugated fluorophore-tagged antibody, thereby allowing selective imaging of these components using TPL and two-photon excited fluorescence lifetime microscopy (2P-FLIM). Our results indicate that the nanoparticle's coating is detached from the particle's surface inside cells, leading to formation of nanoparticle clusters with a strong TPL. Furthermore, we observed an optically resolved spatial separation of the gold core and the antibody coating of the particles inside cells. We used data from two-photon microscopy, 2P-FLIM, electron microscopy, and in vitro assays to propose a model of interactions of functionalized 5 nm AuNPs with live cells.The variations of microRNA (miRNA) expression can be valuable biomarkers in disease diagnosis and prognosis. However, current miRNA detection techniques mainly rely on reverse transcription and template replication, which suffer from slowness, contamination risk, and sample loss. To address these limitations, here we introduce a cascade toehold-mediated strand displacement reaction (CTSDR) and CRISPR/Cas12a trans-cleavage for highly sensitive fluorescent miRNA sensing, namely CTSDR-Cas12a. In this work, the target miRNA hybridizes with the terminal toehold site of a rationally designed probe and subsequently initiates dynamic CTSDR, leading to enzyme-free target recycling and the production of multiple programmable DNA duplexes. The obtained DNA duplex acts as an activator to trigger Cas12a trans-cleavage, generating significantly amplified fluorescence readout for highly sensitive detection of the miRNA target. Under the optimal conditions, the developed sensing method can detect target miRNA down to 70.28 fM with a wide linear range from 100 fM to 100 pM. In particular, by designing a set of probes and crRNAs, we demonstrate its broad applicability for the detection of six kinds of miRNAs with high sequence specificity. Furthermore, the method can be satisfactorily applied to monitor miR-21 in total RNA extracted from cells and clinical serum samples. Considering the high sensitivity, specificity, universality, and ease of handling, this strategy provides a great potential platform for the detection of miRNA biomarkers in molecular diagnostic practice.Coronavirus is an enveloped RNA virus that causes mild to severe respiratory diseases in humans, including HKU1-CoV, 229E-CoV, NL63-CoV, OC43-CoV, SARS-CoV, MERS-CoV, and SARS-CoV-2. Due to the outbreak of SARS-CoV-2, it is important to identify the patients and investigate their immune responses. Protein microarray is one of the best platforms to profile the antibodies in the blood because of its fast, multiplexed, and sensitive nature. To fully understand the immune responses and biological specificities, this study developed a human coronavirus (HCoV) protein microarray and included all seven human coronaviruses and three influenza viruses. Each protein was printed in triplicate and formed 14 identical blocks per array. The HCoV protein microarray showed high reproducibility and sensitivity to the monoclonal antibodies against spike and nucleocapsid protein with detection limits of 10-200 pg. The HCoV proteins that were immobilized on the array were properly folded and functional by showing interactions with a known human receptor, e.