Beringskovsgaard6607

From DigitalMaine Transcription Project
Jump to: navigation, search

RFA with intratumoural OK-432 injection resulted in distant tumour suppression, prolonged survival, and increased dendritic cells, cytotoxic T cells, IFN-γ, and TNF-α, whereas RFA or OK-432 alone did not produce this effect. This combination may induce an abscopal effect in human osteosarcoma.Determining enantiomeric excess (e.e.) in chiral compounds is key to development of chiral catalyst auxiliaries and chiral drugs. Here we describe a sensitive and robust fluorescence-based assay for determining e.e. in mixtures of enantiomers of 1,2- and 1,3-diols, chiral amines, amino alcohols, and amino-acid esters. The method is based on dynamic self-assembly of commercially available chiral amines, 2-formylphenylboronic acid, and chiral diols in acetonitrile to form fluorescent diastereomeric complexes. Each analyte enantiomer engenders a diastereomer with distinct fluorescence wavelength/intensity originating from enantiopure fluorescent ligands. In this assay, enantiomers of amines and amine derivatives assemble with diol-type ligands containing a binaphthol moiety (BINOL and VANOL), whereas diol enantiomers form complexes with the enantiopure amine-type fluorescent ligand tryptophanol. The differential fluorescence is utilized to determine the amount of each enantiomer in the mixture with an error of less then 1% e.e. This method enables high-throughput real-time evaluation of enantiomeric/diastereomeric excess (e.e./d.e.) and product yield of crude asymmetric reaction products. The procedure comprises high-throughput liquid dispensing of three components into 384-well plates and recording of fluorescence using an automated plate reader. The approach enables scaling up the screening of combinatorial libraries and, together with parallel synthesis, creates a robust platform for discovering chiral catalysts or auxiliaries for asymmetric transformations and chiral drug development. The procedure takes ~4-6 h and requires 10-20 ng of substrate per well. Our fluorescence-based assay offers distinct advantages over existing methods because it is not sensitive to the presence of common additives/impurities or unreacted/incompletely utilized reagents or catalysts.Hip fracture (HF) remains a main issue in the elderly patient. About 1.6 million patients a year worldwide are victims of a HF. Their incidence is expected to rise with the aging of the world's population. Identifying risk factors is mandatory in order to reduce mortality and morbidity. The aim of the study was to identify risk factors of 1-year mortality after HF surgery. We performed an observational, prospective, single-center study at Amiens University Hospital (Amiens, France). After ethical approval, we consecutively included all patients with a HF who underwent surgery between June 2016 and June 2017. Perioperative data were collected from medical charts and by interviews. Mortality rate at 12 months was recorded. Univariate analysis was performed and mortality risk factors were investigated using a Cox model. 309 patients were analyzed during this follow-up. Mortality at 1 year was 23.9%. Time to surgery over 48 hours involved 181 patients (58.6%) while 128 patients (41.4%) had surgery within the 48 hours following the hospital admission. Independent factors associated with 1-year mortality were age (HR at 1.059 (95%CI [1.005-1.116], p = 0,032), Lee score ≥ 3 (HR at 1,52 (95% CI [1,052-2,198], p = 0.026) and time to surgery over 48 hours (HR of 1.057 (95% CI [1.007-1.108], p = 0.024). Age, delayed surgical (over 48 hours) management and medical history are important risk factors of 1-year mortality in this French cohort.Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). STO-609 manufacturer However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m-2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m-2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.The doublet-spin nature of radical emitters is advantageous for applications in organic light-emitting diodes, as it avoids the formation of triplet excitons that limit the electroluminescence efficiency of non-radical emitters. However, radicals generally show low optical absorption and photoluminescence yields. Here we explain the poor optical properties of radicals based on alternant hydrocarbons, and establish design rules to increase the absorption and luminescence yields for donor-acceptor-type radicals. We show that non-alternant systems are necessary to lift the degeneracy of the lowest energy orbital excitations; moreover, intensity borrowing from an intense high-lying transition by the low-energy charge-transfer excitation enhances the oscillator strength of the emitter. We apply these rules to design tris(2,4,6-trichlorophenyl)methyl-pyridoindolyl derivatives with a high photoluminescence quantum yield (>90%). Organic light-emitting diodes based on these molecules showed a pure-red emission with an over 12% external quantum efficiency. These insights may be beneficial for the rational design and discovery of highly luminescent doublet emitters.