Bryancallesen7621

From DigitalMaine Transcription Project
Jump to: navigation, search

82. A major QTL for suture strength was detected on LG05, explaining 34% of the phenotypic variation; additionally, two minor QTLs were identified on LG01 and LG11. All three QTLs were confirmed with GWAS on corresponding chromosomes. The findings reported in this study are relevant for application towards a molecular breeding program in walnut.Various injuries to the neural tissues can cause irreversible damage to multiple functions of the nervous system ranging from motor control to cognitive function. The limited treatment options available for patients have led to extensive interest in studying the mechanisms of neuronal regeneration and recovery from injury. Since many neurons are terminally differentiated, by increasing cell survival following injury it may be possible to minimize the impact of these injuries and provide translational potential for treatment of neuronal diseases. While several cell types are known to survive injury through plasma membrane repair mechanisms, there has been little investigation of membrane repair in neurons and even fewer efforts to target membrane repair as a therapy in neurons. Studies from our laboratory group and others demonstrated that mitsugumin 53 (MG53), a muscle-enriched tripartite motif (TRIM) family protein also known as TRIM72, is an essential component of the cell membrane repair machinery in skeletal muscle. Interestingly, recombinant human MG53 (rhMG53) can be applied exogenously to increase membrane repair capacity both in vitro and in vivo. Increasing the membrane repair capacity of neurons could potentially minimize the death of these cells and affect the progression of various neuronal diseases. In this study we assess the therapeutic potential of rhMG53 to increase membrane repair in cultured neurons and in an in vivo mouse model of neurotrauma. We found that a robust repair response exists in various neuronal cells and that rhMG53 can increase neuronal membrane repair both in vitro and in vivo. These findings provide direct evidence of conserved membrane repair responses in neurons and that these repair mechanisms can be targeted as a potential therapeutic approach for neuronal injury.In Hong Kong, there is a cattle population of ~1,200 individuals of uncertain origin and genetic diversity. This population shows heterogeneous morphology, both in body type and pigmentation. Once used as draught animals by the local farmers, they were abandoned around the 1970s due to changes in the economy, and since then have lived as feral populations. To explore the origins of these cattle, we analysed ~50k genotype data of 21 Hong Kong feral cattle, along with data from 703 individuals of 36 cattle populations of European, African taurine, and Asian origin, the wild x domestic hybrid gayal, plus two wild bovine species, gaur and banteng. To reduce the effect of ascertainment bias ~4k loci that are polymorphic in the two wild species were selected for further analysis. The stringent SNP selection we applied resulted in increased heterozygosity across all populations studies, compared with the full panel of SNP, thus reducing the impact of ascertainment bias and facilitating the comparison of divergent breeds of cattle. Our results showed that Hong Kong feral cattle have relatively high levels of genetic distinctiveness, possibly due to the low level of artificial selection, and a likely common ancestry with wild species. We found signs of a putative taurine introgression, probably dating to the import of north European breeds during the British colonialism of Hong Kong. We showed that Hong Kong feral cattle, are distinct from Bos taurus and Bos indicus breeds. Our results highlight the distinctiveness of Hong Kong feral cattle and stress the conservation value of this indigenous breed that is likely to harbour adaptive genetic variation, which is a fundamental livestock resource in the face of climate change and diversifying market demands.The presence of shaped stone balls at early Paleolithic sites has attracted scholarly attention since the pioneering work of the Leakeys in Olduvai, Tanzania. Despite the persistent presence of these items in the archaeological record over a period of two million years, their function is still debated. We present new results from Middle Pleistocene Qesem Cave on the use of these implements as percussion tools. Use-wear and abundant bone and fat residues found on ten shaped stone balls indicate crushing of fresh bones by thrusting percussion and provide direct evidence for the use of these items to access bone marrow of animal prey at this site. Two experiments conducted to investigate and verify functional aspects proved Qesem Cave shaped stone balls are efficient for bone processing and provide a comfortable grip and useful active areas for repeated use. Notably, the patina observed on the analyzed items precedes their use at the cave, indicating that they were collected by Qesem inhabitants, most probably from older Lower Paleolithic Acheulian sites. Thus, our results refer only to the final phases of the life of the items, and we cannot attest to their original function. As bone marrow played a central role in human nutrition in the Lower Paleolithic, and our experimental results show that the morphology and characteristics of shaped stone ball replicas are well-suited for the extraction of bone marrow, we suggest that these features might have been the reason for their collection and use at Qesem Cave. These results shed light on the function of shaped stone balls and are consistent with the significance of animal fat in the caloric intake of Middle Pleistocene humans as shown by the archeozoological evidence at Qesem Cave and possibly beyond.OBJECTIVE We sought to examine whether the effect of treatment modality and drugs for cerebral vasospasm on clinical outcomes differs between elderly and non-elderly subarachnoid hemorrhage (SAH) patients in Japan. METHODS We analyzed the J-ASPECT Study Diagnosis Procedure Combination database (n = 17,343) that underwent clipping or coiling between 2010 and 2014 in 579 hospitals. learn more We stratified patients into two groups according to their age (elderly [≥75 years old], n = 3,885; non-elderly, n = 13,458). We analyzed the effect of treatment modality and anti-vasospasm agents (fasudil hydrochloride, ozagrel sodium, cilostazol, statin, eicosapentaenoic acid [EPA], and edaravone) on in-hospital poor outcomes (mRS 3-6 at discharge) and mortality using multivariable analysis. RESULTS The elderly patients were more likely to be female, have impaired levels of consciousness and comorbidity, and less likely to be treated with clipping and anti-vasospasm agents, except for ozagrel sodium and statin. In-hospital mortality and poor outcomes were higher in the elderly (15.