Harrellmouritsen4642

From DigitalMaine Transcription Project
Jump to: navigation, search

Cholesterol metabolism is greatly affected in fish fed plant-based diet. The regulation of cholesterol metabolism is mediated by both transcriptional factors such as sterol regulatory element-binding proteins (SREBPs) and liver X receptors (LXRs), and posttranscriptional factors including miRNAs. In mammals, SREBP-2 and LXRα are involved in the transcriptional regulation of cholesterol synthesis and elimination, respectively. In mammals, miR-33a is reported to directly target genes involved in cholesterol catabolism. The present study aims to investigate the regulation of cholesterol metabolism by SREBP-2 and LXRα and miR-33a in rainbow trout using in vivo and in vitro approaches. In vivo, juvenile rainbow trout of ~72 g initial body weight were fed a total plant-based diet (V) or a marine diet (M) containing fishmeal and fish oil. In vitro, primary cell culture hepatocytes were stimulated by graded concentrations of 25-hydroxycholesterol (25-HC). The hepatic expression of cholesterol synthetic genes, srebp-2 and miR-33a as well as miR-33a level in plasma were increased in fish fed the plant-based diet, reversely, their expression in hepatocytes were inhibited with the increasing 25-HC in vitro. selleckchem However, lxrα was not affected neither in vivo nor in vitro. Our results suggest that SREBP-2 and miR-33a synergistically enhance the expression of cholesterol synthetic genes but do not support the involvement of LXRα in the regulation of cholesterol elimination. As plasma level of miR-33a appears as potential indicator of cholesterol synthetic capacities, this study also highlights circulating miRNAs as promising noninvasive biomarker in aquaculture.BACKGROUND In studies including the general population, the presence of non-malignant monoclonal gammopathy (MG) can be causally associated with kidney damage and shorter survival. We assessed whether the presence of an MG is associated with a higher risk of kidney failure or death in individuals with chronic kidney disease (CKD). METHODS AND FINDINGS Data were used from 3 prospective cohorts of individuals with CKD (not on dialysis or with a kidney transplant) (1) Renal Impairment in Secondary Care (RIISC, Queen Elizabeth Hospital and Heartlands Hospital, Birmingham, UK, N = 878), (2) Salford Kidney Study (SKS, Salford Royal Hospital, Salford, UK, N = 861), and (3) Renal Risk in Derby (RRID, Derby, UK, N = 1,739). Participants were excluded if they had multiple myeloma or any other B cell lymphoproliferative disorder with end-organ damage. Median age was 71.0 years, 50.6% were male, median estimated glomerular filtration rate was 42.3 ml/min/1.73 m2, and median urine albumin-to-creatinine ratio was 3.4 mg/mmunlike in the general population, risk of death.Extracellular vesicles (EVs) such as exosomes are key regulators of intercellular communication that can be found in almost all bio fluids. Although studies in the last decade have made great headway in discerning the role of EVs in many physiological and pathophysiological processes, the bioavailability and impact of dietary EVs and their cargo still remain to be elucidated. Due to its widespread consumption and high content of EV-associated microRNAs and proteins, a major focus in this field has been set on EVs in bovine milk and colostrum. Despite promising in vitro studies in recent years that show high resiliency of milk EVs to degradation and uptake of milk EV cargo in a variety of intestinal and blood cell types, in vivo experiments continue to be inconclusive and sometimes outright contradictive. To resolve this discrepancy, we assessed the potential postprandial transfer of colostral EVs to the circulation of newborn calves by analysing colostrum-specific protein and miRNAs, including specific isoforms (isomiRs) in cells, EV isolations and unfractionated samples from blood and colostrum. Our findings reveal distinct populations of EVs in colostrum and blood from cows that can be clearly separated by density, particle concentration and protein content (BTN1A1, MFGE8). Postprandial blood samples of calves show a time-dependent increase in EVs that share morphological and protein characteristics of colostral EVs. Analysis of miRNA expression profiles by Next-Generation Sequencing gave a different picture however. Although significant postprandial expression changes could only be detected for calf EV samples, expression profiles show very limited overlap with highly expressed miRNAs in colostral EVs or colostrum in general. Taken together our results indicate a selective uptake of membrane-associated protein cargo but not luminal miRNAs from colostral EVs into the circulation of neonatal calves.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Unpowered exoskeletons with springs in parallel to human plantar flexor muscle-tendons can reduce the metabolic cost of walking. We used ultrasound imaging to look 'under the skin' and measure how exoskeleton stiffness alters soleus muscle contractile dynamics and shapes the user's metabolic rate during walking. Eleven participants (4F, 7M; age 27.7 ± 3.3 years) walked on a treadmill at 1.25 m s-1 and 0% grade with elastic ankle exoskeletons (rotational stiffness 0-250 Nm rad-1) in one training and two testing days. Metabolic savings were maximized (4.2%) at a stiffness of 50 Nm rad-1. As exoskeleton stiffness increased, the soleus muscle operated at longer lengths and improved economy (force/activation) during early stance, but this benefit was offset by faster shortening velocity and poorer economy in late stance. Changes in soleus activation rate correlated with changes in users' metabolic rate (p = 0.038, R2 = 0.44), highlighting a crucial link between muscle neuromechanics and exoskeleton performance; perhaps informing future 'muscle-in-the loop' exoskeleton controllers designed to steer contractile dynamics toward more economical force production.An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.