Healyandresen6411

From DigitalMaine Transcription Project
Jump to: navigation, search

Here, we illustrate a general, modular and expandable framework for the application of HMs to peripheral neural interfaces, in which the correct degree of approximation required to answer different kinds of research questions can be readily determined and implemented. The HM workflow is divided into the following tasks identify and characterize the fiber subpopulations inside the fascicles of a given nerve section, determine different degrees of approximation for fascicular geometries, locate the fibers inside these geometries and parametrize electrode geometries and the geometry of the nerve-electrode interface. These tasks are examined in turn, and solutions to the most relevant issues regarding their implementation are described. Finally, some examples related to the simulation of common peripheral neural interfaces are provided.The amyloid cascade hypothesis, according to which the self-assembly of amyloid-β peptide (Aβ) is a causative process in Alzheimer's disease, has driven many therapeutic efforts for the past 20 years. Failures of clinical trials investigating Aβ-targeted therapies have been interpreted as evidence against this hypothesis, irrespective of the characteristics and mechanisms of action of the therapeutic agents, which are highly challenging to assess. Here, we combine kinetic analyses with quantitative binding measurements to address the mechanism of action of four clinical stage anti-Aβ antibodies, aducanumab, gantenerumab, bapineuzumab and solanezumab. We quantify the influence of these antibodies on the aggregation kinetics and on the production of oligomeric aggregates and link these effects to the affinity and stoichiometry of each antibody for monomeric and fibrillar forms of Aβ. Our results reveal that, uniquely among these four antibodies, aducanumab dramatically reduces the flux of Aβ oligomers.Structural maintenance of chromosome (SMC) protein complexes are the key organizers of the spatiotemporal structure of chromosomes. The condensin SMC complex has recently been shown to be a molecular motor that extrudes large loops of DNA, but the mechanism of this unique motor remains elusive. Using atomic force microscopy, we show that budding yeast condensin exhibits mainly open 'O' shapes and collapsed 'B' shapes, and it cycles dynamically between these two states over time, with ATP binding inducing the O to B transition. Condensin binds DNA via its globular domain and also via the hinge domain. We observe a single condensin complex at the stem of extruded DNA loops, where the neck size of the DNA loop correlates with the width of the condensin complex. The results are indicative of a type of scrunching model in which condensin extrudes DNA by a cyclic switching of its conformation between O and B shapes.Primary cilia are microtubule-based organelles that are important for signaling and sensing in eukaryotic cells. Unlike the thoroughly studied motile cilia, the three-dimensional architecture and molecular composition of primary cilia are largely unexplored. Yet, studying these aspects is necessary to understand how primary cilia function in health and disease. We developed an enabling method for investigating the structure of primary cilia isolated from MDCK-II cells at molecular resolution by cryo-electron tomography. We show that the textbook '9 + 0' arrangement of microtubule doublets is only present at the primary cilium base. A few microns out, the architecture changes into an unstructured bundle of EB1-decorated microtubules and actin filaments, putting an end to a long debate on the presence or absence of actin filaments in primary cilia. Our work provides a plethora of insights into the molecular structure of primary cilia and offers a methodological framework to study these important organelles.The metabolic adaptations by which phloem-feeding insects counteract plant defense compounds are poorly known. Two-component plant defenses, such as glucosinolates, consist of a glucosylated protoxin that is activated by a glycoside hydrolase upon plant damage. Phloem-feeding herbivores are not generally believed to be negatively impacted by two-component defenses due to their slender piercing-sucking mouthparts, which minimize plant damage. However, here we document that glucosinolates are indeed activated during feeding by the whitefly Bemisia tabaci. This phloem feeder was also found to detoxify the majority of the glucosinolates it ingests by the stereoselective addition of glucose moieties, which prevents hydrolytic activation of these defense compounds. Glucosylation of glucosinolates in B. tabaci was accomplished via a transglucosidation mechanism, and two glycoside hydrolase family 13 (GH13) enzymes were shown to catalyze these reactions. This detoxification reaction was also found in a range of other phloem-feeding herbivores.The MerR-family transcription factors (TFs) are a large group of bacterial proteins responding to cellular metal ions and multiple antibiotics by binding within central RNA polymerase-binding regions of a promoter. While most TFs alter transcription through protein-protein interactions, MerR TFs are capable of reshaping promoter DNA. To address the question of which mechanism prevails, we determined two cryo-EM structures of transcription activation complexes (TAC) comprising Escherichia coli CueR (a prototype MerR TF), RNAP holoenzyme and promoter DNA. JNK-IN-8 solubility dmso The structures reveal that this TF promotes productive promoter-polymerase association without canonical protein-protein contacts seen between other activator proteins and RNAP. Instead, CueR realigns the key promoter elements in the transcription activation complex by clamp-like protein-DNA interactions these induce four distinct kinks that ultimately position the -10 element for formation of the transcription bubble. These structural and biochemical results provide strong support for the DNA distortion paradigm of allosteric transcriptional control by MerR TFs.TRAAK is an ion channel from the two-pore domain potassium (K2P) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K2P4.1 toward lipids remains poorly understood. Here we show the two isoforms of K2P4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. The channel can also discriminate the fatty acid linkage at the SN1 position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid had the lowest equilibrium dissociation constants for both isoforms of K2P4.1. Liposome potassium flux assays with K2P4.1 reconstituted in defined lipid environments show that those containing phosphatidic acid activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K2P4.1.