Koldingfriis2917
The water-vapor transition is critical for hydrogels in a collection of applications. However, how the polymer-water interaction along with the nature of the structure affect the macroscopic water-vapor transition remains a challenging question to answer. In this work, we tested the moisture transfer behaviors of a series of hydrogels at different humidities and found some hydrogels capable of lowering their surface vapor pressure to stop dehydration at low humidity and absorbing water from ambient air to recover toward initial states at high humidity. Through molecular dynamic simulations, we demonstrate that water inside these hydrogels undergoes increasing intensive intermolecular bonding during evaporation. The increased intermolecular bonding reduces the vapor pressure of the hydrogels and leads to the self-regulation. More interestingly, we demonstrate the self-regulation is closely related to the Young's modulus of hydrogels. These results provide further insight into the mechanism of the water-vapor transition in hydrogels and show potential in a broad range of future applications.Due to the ultrafast crystallization process in the triple-source ligand-assisted reprecipitation (TSLARP) technique the [L y PbBr x ] octahedra is easily distorted, resulting in anisotropic two-dimensional nanoplatelets (NPLs) with low photoluminescence quantum yield (PLQY) and poor stability. Unexpectedly, we obtain CsPbBr3 NPLs with PLQY approaching unity and high stability using the TSLARP technique through aging the metal-oleate precursors. We find that the significant enhancement of the PLQY is related to the change of solution chemistry of the Pb-oleate precursor in the aging process. While hybrid CsPbBr3@Cs4PbBr6 NPLs with low PLQY (28%) are formed with fresh Pb-oleate precursor, phase-pure CsPbBr3 NPLs with PLQY of 97.4% are obtained with the aged Pb-oleate precursor. A model that takes into account the transformation of the Pb-oleate in toluene from isolated molecules into clusters after aging is proposed to explain the phenomenon. Our finding highlights the importance of understanding the solution chemistry for the synthesis of the highly luminescent NPLs and provides a new way to break the "blue-wall" in perovskite light-emitting devices.A molecular-level description of the aqueous nanochannels in lyotropic liquid crystals (LLCs) is crucial for their widespread utilization in diverse fields. Herein, the polarity and hydrogen bonding effects of LLC water molecules have been simultaneously explored using a single probe, 4'-N,N-dimethylamino-3-hydroxyflavone (DMA3HF), by the unique multiparametric sensitivity of the excited state proton-coupled electron transfer (PCET) phenomenon. The decreased ESIPT efficiency and the significantly retarded ESIPT dynamics (>20 times) of DMA3HF in the LLC phases suggests the dominant influence of strong hydrogen-bonded solute-solvent complexes that leads to a high activation barrier for ESIPT in the mesophases. The effects of hydrogen bonding on ESIPT have been elucidated by enhanced sampling techniques based on classical MD simulations of DMA3HF in explicit water. ESIPT via an extended hydrogen-bonded water wire is associated with a significantly high ESIPT activation barrier, substantiating the experimentally observed slow ESIPT dynamics inside the LLCs.When an insoluble surfactant is deposited on the surface of a thin fluid film, stresses induced by surface tension gradients drive Marangoni spreading across the subphase surface. The presence of a predeposited layer of an insoluble surfactant alters that spreading. Selleckchem D-Cycloserine In this study, the fluid film was aqueous, the predeposited insoluble surfactant was dipalmitoylphosphatidylcholine (DPPC), and the deposited insoluble surfactant was oleic acid. An optical density-based method was used to measure subphase surface distortion, called the Marangoni ridge, associated with propagation of the spreading front. The movement of the Marangoni ridge was correlated with movement of surface tracer particles that indicated both the boundary between the two surfactant layers and the surface fluid velocities. As the deposited oleic acid monolayer spread, it compressed the predeposited DPPC monolayer. During spreading, the surface tension gradient extended into the predeposited monolayer, which was compressed nonuniformly, from the deposited monolayer. The spreading was so rapid that the compressed predeposited surfactant could not have been in quasi-equilibrium states during the spreading. As the initial concentrations of the predeposited surfactant were increased, the shape of the Marangoni ridge deformed. When the initial concentration of the predeposited surfactant reached about 70 A2/molecule, there was no longer a Marangoni ridge but rather a broadly distributed excess of fluid above the initial fluid height. The nonuniform compression of the annulus of the predeposited monolayer also caused tangential motion ahead of both the Marangoni ridge and the boundary between the two monolayers. Spreading ceased when the two monolayers reached the same final surface tension. The final area per molecule of the DPPC monolayer matched that expected from the equilibrium DPPC isotherm at the same final surface tension. Thus, at the end of spreading, there was a simple surface tension balance between the two distinct monolayers.Electrically conductive membranes are a promising avenue to reduce water treatment costs due to their ability to minimize the detrimental impact of fouling, to degrade contaminants, and to provide other additional benefits during filtration. Here, we demonstrate the facile and low-cost fabrication of electrically conductive membranes using laser-reduced graphene oxide (GO). In this method, GO is filtered onto a poly(ether sulfone) membrane support before being pyrolyzed via laser into a conductive film. Laser-reduced GO composite membranes are shown to be equally as permeable to water as the underlying membrane support and possess sheet resistances as low as 209 Ω/□. Application of the laser-reduced GO membranes is demonstrated through greater than 97% removal of a surrogate water contaminant, 25 μM methyl orange dye, with an 8 V applied potential. Furthermore, we show that laser-reduced GO membranes can be further tuned with the addition of p-phenylenediamine binding molecules to decrease the sheet resistance to 54 Ω/□.