Lundsgaardalbrektsen0811
65% of the crystal violet was photo-degraded in 40 min. The obtained crystal violet degradation results were fitted onto a Langmuir-Hinshelwood (L-H) plot. The antioxidant performances of Cr2O3, and Cr2O3/cellulose were analyzed. The beneficial antibacterial performance of the Cr2O3/cellulose nanocomposites was tested by various bacteria as Escherichia coli, Pseudomonas aeruginosa, staphylococcus aurous, and Streptococcus pyogenes. V.Unlike normal cells, cancer cells mutate to thrive in exaggerated levels of reactive oxygen species (ROS). This potentially makes them more susceptible to small molecule-induced oxidative stress. The intracellular ROS increase in cancer cells is a potential area under investigation for the development of cancer therapeutics targeting cancer cells. Visible photons of 430-490 nm wavelengths from a blue-light emitting diode (BLED) encompass the visible region of the spectrum known to induce ROS in cancer cells. Curcuminoids (CUR) naturally occurring photosensitizers sensitized by the blue wavelength of the visible light, well known for its potent anti-inflammatory and anticancer activity. Poor solubility and bioavailability, of the compound of the small molecule CUR restrict the therapeutic potential and limits CUR to be used as a photosensitizer. Here, our research group reports the use of small molecules CUR, encapsulated in liposome nanocarriers (LIP-CUR) coupled with blue light-emitting diode (BLED) induced photodynamic therapy (BLED-PDT). In A549 cancer cells in vitro, LIP-CUR coupled with BLED initiated BLED-PDT and triggered 1O2, ultimately resulting in caspase-3 activated apoptotic cell death. The combination of a non-cytotoxic dose of small molecule CUR co-treated with BLED to trigger BLED-PDT could be translated and be developed as a novel strategy for the treatment of cancer. The raphidophyte Chattonella antiqua is a noxious red-tide-forming alga that harms fish culture and the aquatic environment. Chattonella antiqua produces and secretes superoxide anions (O2-), and excessive secretion of O2- into the water has been associated with fish mortality. It is known that strong light stimulates the production of O2- in Chattonella spp. but the mechanism of the light-induced production of O2- remains to be clarified. In the present study, we examined the effects of light on extracellular levels of O2- and photosynthesis in C. Crizotinib manufacturer antiqua. Extracellular levels of O2- rose during growth under high-intensity light, and the level of O2- was correlated with the photosynthetic parameter qP, which reflects the rate of transport of electrons downstream of photosystem II. The production of O2- was inhibited in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, an inhibitor of photosynthetic electron transport, suggesting that reducing power derived from electron transport might be required for the production of O2-. By contrast, the production of O2- was enhanced in the presence of glycolaldehyde, an inhibitor of the Calvin-Benson cycle, suggesting that the accumulation of NADPH might stimulate the production of O2-. Thus, it is likely that the production of O2- is regulated by photosynthesis in C. antiqua. The use of plant bioactives in cosmetic formulations are increasing due to the search for new sustainable sources of raw materials, greater concern for safety and possible social impacts caused by the incorrect use of natural resources. Plant extracts have been the subject of several studies in several industrial areas. However, the potential use of tropical fruits extracts in cosmetic formulations remains largely unexplored. Considering the impact on public health and the possibility of using wastes from fruit processing, the aim of this work is to identify, evaluate and develop a sunscreen based on rambutan peel extracts (Nephelium lappaceum L) as a natural additive for enhancing the final product sun protection factor (SPF). The phytochemical screening revealed the presence of tannins and flavonoids and the absence of coumarins. Even presenting a low sunscreen factor when used alone (SPF value 0.4), rambutan extract at 1.00% FTP concentration improved the photoprotective result (11.2) of the formulation containing 7.5% of ethylhexyl metoxycinnamate (EHMC) by 134%. The addition of rambutan extract in the formulation shows the potential to reduce the use of synthetic photoprotectors by about 64% of the total synthetic organic filters used to achieve the SPF value of 26.3. In addition, the sunscreen formulation supplemented with rambutan extract containing 1.00% RTP shows the potential to minimize the risk of synthetic agent toxicity and a 45% reduction in the cost of sunscreen production. Antibiotic resistance is a major public health problem worldwide and the finding of alternative methods for eliminating bacteria is one of the prerogatives of medical research. The indiscriminate use of antibiotics in dentistry, especially for the treatment of peri-implantitis, could lead to superinfections. Alternative methods, like photodynamic therapy mediated by the use of aminolevulinic acid and a red light has been largely described, especially in dentistry, but results were encouraging against Gram-positive bacteria, but limited against Gram-negative. The effectiveness of photodynamic therapy mediated by a novel product containing aminolevulinic acid, Aladent (ALAD) has been tested in this in vitro study, against different types of bacteria particularly involved in the infections of the oral cavity and peri-implantitis. The novelty of ALAD is the marked hydrophilicity that should increase the passage of the molecule through the membrane pores of Gram-negative bacteria. Considering the novelty of the pr tests demonstrated that ALAD gel with LED irradiation exerts a potent antibacterial activity on different bacteria, both Gram-positive and Gram-negative. UV exposure could induce carcinogenic mutation in human cells, including CPD (Cyclobutane pyrimidine dimer), and 6-4 pp (6-4 photoproduct) DNA damages. Spiting the active BER (Base Excision Repair) system of human cells, it lacks initiator glycosylase, rendering these damages to be only repaired through NER (Nucleotide Excision Repair) system. Some microorganisms such as Deinococcus radiodurans bacteria have a BER system for repairing these damages with an enzyme coded by the uvsE gene. This study evaluated the efficacy of the recombinant UVSE protein for repairing the CPD and 6-4 pp DNA damages in human cells. At the current study, the optimized sequence of the uvsE gene was synthesized and expressed in Hek293T cell line. The identity of protein was ascertained through ELISA assay and the stability of expression was measured via qPCR. The human Hek293T cells with the recombinant protein and without it were exposed to the UV light, and the repair of DNA damages was analyzed in both conditions using CPD and 6-4PP ELISA Combo Kit.