Lyhnerubin5285
Here, we summarize current knowledge on seed phenolics as model, and discuss how recent progresses in omics approaches could help to further characterize their diversity, regulations, and the underlying molecular mechanisms involved.Heat stress has negative effects on plant performance, especially in photosynthesis and photoprotection. To withstand heat stress, plants modulate steroid phytohormones, brassinosteroids (BRs). However, their regulation and functions in heat stress acclimation are still poorly understood. Plant growth, photoinhibition, photo-oxidative stress and endogenous contents of hormones (including not only BRs but also abscisic acid, salicylic acid and jasmonic acid) were evaluated during heat stress in Arabidopsis thaliana wild type plants and loss-of-function mutations in either BR biosynthetic or signaling genes. It was found that a defect in BRI1-EMS-SUPPRESSOR 1 (bes1)-mediated BR signaling showed the most sensitive characteristics to heat stress compared to wild type and other BR mutants. Sensitivity was associated with declined PSII photochemistry efficiency (Fv/Fm) together with increased carotenoid, tocopherol and lipid hydroperoxide contents, which evidences higher photoinhibition and photo-oxidative stress in the bes1 mutant under heat stress. Furthermore, the bes1 mutant showed greater contents of abscisic acid (ABA) after one day of exposure to heat stress. However, all heat stress symptoms in the bes1 mutant could be mitigated by the application of 24-epibrassinolide. Therefore, it is concluded that BES1 transcription factor plays a role in plants responses to heat stress, relieving photoinhibition and photo-oxidative stress, but that alternative BR signaling pathways to BES1 may also be effective in heat stress acclimation. Furthermore, this study emphasizes the complex interplay between BR and ABA in the heat acclimation process.Rapid and low-cost methods of detecting mutations and polymorphisms are crucial for genotyping applications including mutagenesis and gene editing. S1 family endonucleases such as T7E1, EndoV and CELI can potentially be used in enzymatic mismatch detection. Among them, CELI has been shown to be effective in detecting mutations in Targeting Induced Local Lesions IN Genomes (TILLING). However, current method of CELI purification from celery is laborious, and challenging for many non-biochemical laboratories, and the presence of post-translational modifications hinders efficient production of the enzyme in E. coli. Tubastatin A supplier Here, we report an efficient system for bulk production of enzymatically active CELI endonuclease through transient expression in a model plant Nicotiana benthamiana. We also optimized the reaction buffer, by additions of Mn2+ and DTT, with enhanced mismatch cleavage activity. Using the new CELI production and reaction system, we were able to routinely detect mismatches in 1/32 mixed mutant and wildtype DNA samples. We believe the newly established system has many applications in characterization of mutations occurred in natural variations, mutagenized populations and gene editing.Breeding to enrich lignin, a major component of lignocelluloses, in plants contributes to enhanced applications of lignocellulosic biomass into solid biofuels and valuable aromatic chemicals. To collect information on enhancing lignin deposition in grass species, important lignocellulose feedstocks, we generated rice (Oryza sativa) transgenic lines deficient in OsWRKY36 and OsWRKY102, which encode putative transcriptional repressors for secondary cell wall formation. We used CRISPR/Cas9-mediated targeted mutagenesis and closely characterized their altered cell walls using chemical and nuclear magnetic resonance (NMR) methods. Both OsWRKY36 and OsWRKY102 mutations significantly increased lignin content by up to 28 % and 32 %, respectively. Additionally, OsWRKY36/OsWRKY102-double-mutant lines displayed lignin enrichment of cell walls (by up to 41 %) with substantially altered culm morphology over the single-mutant lines as well as the wild-type controls. Our chemical and NMR analyses showed that relative abundances of guaiacyl and p-coumarate units were slightly higher and lower, respectively, in the WRKY mutant lignins compared with those in the wild-type lignins. Our results provide evidence that both OsWRKY36 and OsWRKY102 are associated with repression of rice lignification.The SQUAMOSA promoter-binding protein-like (SPL) proteins play vital roles in plant growth and development in rice (Oryza sative L.) and Arabidopsis thaliana (L.) Heynh. However, few studies regarding the SPL proteins have been reported in wheat. In this study, 56 TaSPLs were clustered into eight groups according to an OsSPL phylogenetic comparison analysis. The expression patterns of TaSPLs in different tissues were analysed by RNA-seq data, and partial results were confirmed by qRT-PCR. Based on the above results, genes such as TaSPL13 and TaSPL15 may be involved in spike or seed development in wheat. Multiple genes that regulate the inflorescence architecture of rice have been identified. Additionally, studies on the genes associated with spikelet development in wheat have been reported relatively rarely. Here, TaSPL13-2B was transferred into wheat cv. Bobwhite. Compared with the wild type, the transgenic lines showed significant increases in the number of florets and grains per spike, indicating that TaSPL13-2B could influence the floret development of wheat. TaSPL13-2B was transferred into rice cv. Nipponbare, which demonstrated that TaSPL13-2B can modify panicle architecture in transgenic rice, with significant increases in panicle length, the number and length of primary branches, and the number of secondary branches.Drought is one of the most common abiotic stresses, and can limit wheat yield, crops and productivity. GAPCs play vital roles under drought stress conditions in multiple species. The aim of this experiment was to determine the regulatory mechanism of TaGAPC5 under drought stress. In this study, the genes and promoters of TaGAPC5 in diverse drought-tolerant cultivars were cloned. The amino acid sequences were conserved, while the promoter fragments were not identical. Under abiotic stress, the expression level of TaGAPC5 was substantially different among the diverse drought-tolerant cultivars and the promoter activities were significantly improved. The yeast one-hybrid system and Electrophoretic mobility shift assay (EMSA) demonstrated that TaWRKYs bound to specific W-boxes TaWRKY28, TaWRKY33, TaWRKY40 and TaWRKY47 bind to G/ATGACG/C/A, C/G/ATGACG, C/ATGACC and C/ATGACC/G, respectively. By analyzing different 5' deletion mutants of these promoters, it was determined that these W-boxes in CW-TaGAPC5 promoter (-1262, -1202, -904, -880 and -207) and ZY-TaGAPC5 promoter (-697 and -220) bound by these four TaWRKYs and were functional under drought stress.