Mejiafitzgerald0390

From DigitalMaine Transcription Project
Jump to: navigation, search

Based on the developed analytical diagnostic technique, a well-designed 3D printed portable prototype device based on electrosynthesis of the conducting polymer powered by an ordinary battery (1.5 V) was tested and was found to have excellent performance in onsite 3D skin pattern reproduction from live human skin.Herein, we propose rapid, precise acetylcholinesterase (AChE) inhibition-based sensing strategy for malathion detection in the presence of Ag-GO and acetylthiocholine (ATCh). The biosensing method was developed with a nanocomposite of citrate stabilized AgNPs anchored on the GO sheets (Ag-GO). The physical and chemical properties of the prepared Ag-GO composite were analyzed with various characterization techniques, including XRD, FT-IR, XPS, UV-Visible spectroscopy, and HR-TEM. The positively charged thiocholine (TCh) produced by enzyme hydrolysis triggers the AgNPs aggregation on GO sheets, which ultimately decreases the intensity of the corresponding SPR absorption peak. While the addition of malathion into the sensing system hindered the AChE activity and limited the TCh production, and thus inhibits the decrease in the SPR band intensity. The designed sensing system displayed linearity in the broad range of malathion concentrations (0.01 pM-1000 pM) with a limit of detection and the limit of quantification values of 0.01 pM, and 0.035 pM, respectively. The application of the designed biosensing system was extended to determine the malathion in actual samples namely, tap water, agricultural runoff water, lake water, and grape extract, which resulted in almost 100% recovery rates in all the spiked samples.Benefit from the additional correction of the output signal in dual-mode detection, traditional dual signal readout strategies are performed by constructing the ratiometric fluorescent probe through excitation energy transfer (EET) or fluorescence resonance energy transfer (FRET). To avoid the complicated modification process and obtain the results rapidly, a simple dual-mode sensing strategy based on the electronic effects of p-nitrophenol (PNP) is described to monitor the activities of alkaline phosphatase (ALP). In the sensing platform, p-nitrophenylphosphate was used as a substrate to produce the PNP using ALP as the catalyst. Due to the PNP possesses negative effect of induction and conjugation, photoinduced electron transfer and hyperchromic effect have been achieved between PNP and polyethyleneimine-protected copper nanoclusters (PEI-Cu NCs), which caused the changes of the fluorescence intensity and UV-visible absorption. The dual-mode signal sensing system showed the satisfactory linear results of ALP from 1 to 100 U/L for fluorescent sensing strategy and 1-70 U/L for the absorption method with a competitive LOD of 0.27 and 0.87 U/L (signal-to-noise ratio of 3). This strategy detected biological ALP in human serum and bio-imaging of endogenous ALP in A549 cells successfully, which verifies a certain potential of the strategy for the practical applications.Indole is a major metabolite of tryptophan, which plays an important role in the intestinal microecological balance and human physiological activities. The determination of indole becomes important for its researches. So, it is urgent to establish a sensitive and cost-effective method for indole detection. Herein, a sensitive electrochemical method was constructed to determine the concentration of indole using screen-printed carbon electrode (SPCE) with the signal amplification strategy by gold/iron-oxide composite nanoparticles (Au/Fe3O4). Au/Fe3O4 nanoparticles were successfully synthesized under the irradiation by high-energy electron beams. 4-aminothiophenol (4-ATP) was connected to Au/Fe3O4 via Au-S bond. And then NaNO2 reacted with 4-ATP to form the azo bond, which could form the final product of Au/Fe3O4@ATP-azo-indole by the coupling reaction. Thus, the concentration of indole was detected by the electrochemical signal produced by Au/Fe3O4@ATP-azo-indole indirectly. The detection sensitivity was greatly improved by the large specific surface area provided by Au/Fe3O4 after the modification. read more The linear range of indole was from 0.50 to 120.00 μg L-1 and the limit of detection (LOD) was as low as 0.10 μg L-1 (S/N = 3). Furthermore, the developed method exhibited acceptable intra-day and inter-day precisions with the coefficient of variations (CV) less than 4.9% and 8.2%, respectively. And the recoveries were from 97.2% to 105.4%. An innovative, sensitive, cost-effective method was established for indole determination in human plasma matrix in this manuscript, which provides a promising way for indole detection in conventional laboratories.A challenge for shotgun proteomics is the identification of low abundance proteins, which is always hampered owing to the extreme complexity of protein digests and highly dynamic concentration range of proteins. To reduce the complexity of the peptide mixture, we developed a novel method to selectively enrich N-terminal proline peptides via hydrazide chemistry. This method consisted of ortho-phthalaldehyde (OPA) blocking of primary amines in peptides, reductive glutaraldehydation of N-terminal proline and solid phase hydrazide chemistry enrichment of aldehyde-modified N-terminal proline peptide. After enrichment, the number of detected peptides containing N-terminal proline increased from 1304 to 4039 and the ratio of N-terminal proline peptides jumped from 4.4% to 93.7%, showing good enrichment specificity towards N-terminal proline peptides. Besides, the ratio of identified peptides to proteins was decreased from 7.8 (29751/3811) to 1.5 (4347/2821), indicating that sample complexity was drastically reduced through this method. As a result, this novel approach for enriching N-terminal proline peptides is effective in identification of low abundance protein owing to the reduction of sample complexity.The pre-processing of samples is important factors that affect the results of the RNA-sequencing (RNA-seq) data. However, the effects of frozen sections storage conditions on the integrity of RNA and sequencing results haven't been reported. The study of frozen section protection schemes can provide reliable experimental results for single-cell and spatial transcriptome sequencing. In this study, RNA was isolated to be studied for RNA from brain section at different temperatures (RT room temperature, -20 °C) and storage time (0 h, 2 h, 4 h, 8 h, 12 h, 16 h, 24 h, 7day, 3week, 6month). The stability of reference genes was validated using reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that the storage at room temperature significantly affected RNA integrity number (RIN), and the RIN value was lower with the prolongation of storage, while the storage at -20 °C exerted less effect on the RIN value. Cresyl violet staining for brain tissue sections had little effect on RNA integrity.