Nymanntyler8921

From DigitalMaine Transcription Project
Jump to: navigation, search

Large amounts of lignocellulosic biomass are discarded, whereas the carbon source of sewage is deficient. This situation greatly impairs the efficiency of wastewater treatment. To address this concern, we evaluate the feasibility of using hydrochar as a potential carbon source by systematically investigating the effects of hydrothermal carbonization (HTC) conditions on the composition, content, and chemical structure of dissolved organic matter (DOM) released from hydrochar. Results show that the most important factor that affects the properties of hydrochar and DOM is temperature, followed by heating rate. Under optimal HTC conditions, the growth of Bacillus subtilis increased by 18.32% in hydrochar aqueous solution in comparison with the 6.64% growth of the untreated biomass group. Excitation emission matrix-parallel factor analysis and UV-vis analyses confirm that the DOM released by hydrochar produced at a low temperature mainly contains protein substances, which promote the growth of microorganisms. The DOM released by hydrochar at a high temperature mainly contains humic substances with an aromatic structure; such substances are toxic to microorganisms. This study demonstrates that hydrochar obtained under optimized conditions can be a potential carbon source of wastewater treatment plants.The UV-filter benzophenone-3 (BP3) tends to associate with suspended sediment (SPS) due to hydrophobicity, which could alter its toxicological effects on non-target aquatic organisms. In this study, the freshwater cladoceran Daphnia magna (D. magna) was selected as a model organism to investigate the impacts of the source and composition of SPS on the accumulation and multiple toxicological effects (from the molecular level to individual level) of BP3. Among the three components of SPS, amorphous organic carbon (AOC) and minerals promoted the body burden of BP3, while black carbon (BC) inhibited the bioaccumulation. The inhibition effects of BP3 on swimming and feeding behaviors of D. magna were also enhanced due to the presence of AOC and BC. Compared with BP3 exposure alone, higher oxidative stress and neurotoxicity were observed in the presence of SPS containing AOC, BC and minerals, corresponding to that superoxide dismutase, catalase and glutathione-S-transferase activities were further induced, and acetylcholinesterase activity was inhibited. Furthermore, BP3 induced mRNA expression levels of the endocrine system (ecdysone receptor, cytochrome P450 CYP314) and metabolic system (toxicant nuclear receptor HR96, P-glycoprotein), and the presence of SPS containing AOC, BC and minerals exhibited an enhanced effect. Combined with all endpoints, evident relationship was observed between the bioaccumulation level and the response of individual behavior and molecular biomarkers. The results demonstrated that the effects of SPS compositions on bioaccumulation and toxicological effects of organic UV-filters should be considered in aquatic environments.The vital functions of extracellular polymeric substances (EPS) have been well recognized in bioleaching of sulfide ores. However, no report is available about the role of EPS in bioleaching of spent catalyst. To completely and deeply understand the functions of EPS in bioleaching of spent catalyst, the generation behavior of EPS at various pulp densities during bioleaching was characterized by three-dimensional excitation-emission matrix (3DEEM), and its relevance with bioleaching performance and process parameters were analyzed using mathematical means. The results showed that the EPS contain humus-like substances as main component (>70%) and protein-like substances as minor component ( less then 30%). Both total EPS and humus-like substances mainly keep growing over the whole duration of bioleaching at low pulp density of 5.0% or lower; whereas total EPS and humus-like fraction keep declining at high pulp density of 7.5% or higher. Among the total EPS and its components, humus-like substances only have a positive significant correlation with bioleaching efficiencies of both Co and Mo and affect bioleaching process more greatly due to greater correlation coefficient. Biofilm appears at the spent catalyst surface under 2.5% of pulp density mediated by EPS while no biofilm occurs at 10% of pulp density due to shortage of EPS, accounting for the great difference in bioleaching efficiencies between high and low pulp densities which are 48.3% for Mo and 50.0% for Co at 10% of pulp density as well as 75.9% for Mo and 78.8% for Co at 2.5% of pulp density, respectively.Volatile organic compounds (VOCs) from solvent-based architectural coatings (SBACs) play an important role in photochemical air pollution with increasing consumption of architectural coatings in China. In this study, we collected 148 typical SBACs of 3 types in China. The TVOC emission factors and source profiles were established, the contributions of SBACs to ozone and secondary organic aerosol (SOA) formation were investigated. The VOC emissions and O3 and SOA amounts formed in chemical reactions from SBACs in 2017 were estimated. Key organic groups and VOC species with high reactivity were identified. learn more According to the results, the TVOC emission factors were 507.17 g L-1 for solvent-based anticorrosive coatings, 381.34 g L-1 for solvent-based floor coatings and 459.68 g L-1 for solvent-based fire-retardant coatings. The VOC emissions were 186,902.11 t, 88,225.41 t and 71,352.32 t; the O3 amounts formed were 742,001.39 t, 397,896.60 t and 244,738.46 t; the SOA amounts formed were 3934.29 t, 2488.04 t and 1104.61 t, respectively, from 3 types of SBACs in 2017. The O3 production factors were 1781.82 g O3 (kg paint)-1, 1457.50 g O3 (kg paint)-1 and 1176.63 g O3 (kg paint)-1, the SOA production factors were 9.45 g SOA (kg paint)-1, 9.11 g SOA (kg paint)-1 and 5.31 g SOA (kg paint)-1, for 3 types of SBACs. Priority should be given to organic group of aromatics and top 17 VOC species with high reactivity for O3 and SOA eliminating strategies, especially three xylenes (o-xylene, m-xylene and p-xylene), ethylbenzene, trimethyl benzenes (1,3,5-trimethyl benzene, 1,2,3-Trimethyl benzene) and toluene.