Bennedsensun2105

From DigitalMaine Transcription Project
Jump to: navigation, search

MXenes have emerged as one of the most interesting material classes, owing to their outstanding physical and chemical properties enabling the application in vastly different fields such as electrochemical energy storage (EES). MXenes are commonly synthesized by the use of their parent phase, i.e., MAX phases, where "M" corresponds to a transition metal, "A" to a group IV element, and "X" to carbon and/or nitrogen. As MXenes display characteristic pseudocapacitive behaviors in EES technologies, their use as a high-power material can be useful for many battery-like applications. Here, a comprehensive study on the synthesis and characterization of morphologically different titanium-based MXenes, i.e., Ti3C2 and Ti2C, and their use for lithium-ion batteries is presented. First, the successful synthesis of large batches (≈1 kg) of the MAX phases Ti3AlC2 and Ti2AlC is shown, and the underlying materials are characterized mainly by focusing on their structural properties and phase purity. Second, multi- and few-layered MXenes are successfully synthesized and characterized, especially toward their ever-present surface groups, influencing the electrochemical behavior to a large extent. Especially multi- and few-layered Ti3C2 are achieved, exhibiting almost no oxidation and similar content of surface groups. These attributes enable the precise comparison of the electrochemical behavior between morphologically different MXenes. Since the preparation method for few-layered MXenes is adapted to process both active materials in a "classical" electrode paste processing method, a better comparison between both materials is possible by avoiding macroscopic differences. Therefore, in a final step, the aforementioned electrochemical performance is evaluated to decipher the impact of the morphology difference of the titanium-based MXenes. Most importantly, the delamination leads to an increased non-diffusion-limited contribution to the overall pseudocapacity by enhancing the electrolyte access to the redox-active sites.We developed a method for photoelectrochemical (PEC) sensing based on a AuNPs/graphdiyne, as a low background signal composite material, modified electrode coupled with a nanoprobe (probe DNA/DA/MBA/WSe2) for sensitive α-synuclein (α-Syn) detection. A tungsten selenide (WSe2) nanoflower was first produced with a one-pot solvothermal method and employed as a signal amplification element and the modified substrate of the nanoprobe. The synergy effect between the WSe2 nanoflower and graphdiyne (GDY) can reduce the photoinduced electron-hole recombination and expedite the spatial charge separation. Due to the synergistic effect of AuNPs/GDY and WSe2, this detection strategy provides a high signal-to-noise ratio and good performance. The signal indicator, dopamine/4-mercaptophenyl boronic acid/WSe2 (DA/MBA/WSe2), was generated with the recognition of boron-diol. In the presence of the α-Syn oligomer, the target triggered cycle I strand displacement amplification and achieved the conversion of the α-Syn oligomer to a massive output of false-target DNA (FT). The output FT was used for the cycle II catalytic hairpin assembly onto the electrode which was modified with AuNPs/GDY and triple-stranded DNA (TsDNA); thereby, plenty of PEC nanoprobes which are composed of probe DNA and the signal indicator are captured, and the photocurrent response is produced correspondingly. This PEC biosensor generated a strong photocurrent with low blank (27.6 nA) and was sensitive to α-Syn oligomer. The limit of detection was 3.3 aM, and the relative standard deviation (RSD) was 3.7% at 100 aM. Moreover, it also has good selectivity, indicating promising potential in clinical diagnostics.Precise control of intracellular redox status, i.e., maintenance of the physiological level of reactive oxygen species (ROS) for mediating normal cellular functions (oxidative eustress) while evading the excess ROS stress (distress), is central to the concept of redox medicine. In this regard, engineered nanoparticles with unique ROS generation, transition, and depletion functions have the potential to be the choice of redox therapeutics. However, it is always challenging to estimate whether ROS-induced intracellular events are beneficial or deleterious to the cell. Here, we propose the concept of redox buffering capacity as a therapeutic index of engineered nanomaterials. As a steady redox state is maintained for normal functioning cells, we hypothesize that the ability of a nanomaterial to preserve this homeostatic condition will dictate its therapeutic efficacy. Additionally, the redox buffering capacity is expected to provide information about the nanoparticle toxicity. Here, using citrate-functionalized trimanganese tetroxide nanoparticles (C-Mn3O4 NPs) as a model nanosystem, we explored its redox buffering capacity in erythrocytes. Furthermore, we went on to study the chronic toxic effect (if any) of this nanomaterial in the animal model to co-relate with the experimentally estimated redox buffering capacity. This study could function as a framework for assessing the capability of a nanomaterial as redox medicine (whether maintains eustress or damages by creating distress), thus orienting its application and safety for clinical use.In recent years, there has been an explosive increase in the research on van der Waals (vdW) crystals because of their great potential applications in many optoelectronic devices. It is necessary to determine their temperature-dependent lattice vibration characteristics because their thermal and electrical transport are closely related to the anharmonic phonon effect, which will affect the performance of the devices. We review the temperature-dependent Raman spectroscopy of vdW crystals, systematically introduce the thermal behavior of optical phonons, and summarize their shift with temperature. Upon analyzing the theoretical models and summarizing the reported experimental data, it is found that the phonon shifts of vdW crystals have a "quasi-linear" relationship with temperature, which is widely described with first-order temperature (FOT) coefficients obtained through a linear fit. learn more Thus, subsequently, the phonon shifts of monolayer materials, different-thickness crystals, suspended and supported samples, in-plane and out-of-plane modes in the same vdW materials, as well as heterostructures and alloys are discussed through comparative analysis of FOT coefficients.