Cramerdaugaard6935
Chronic hypoxia (CH) during postnatal development causes a blunted hypoxic ventilatory response (HVR) in neonatal mammals. The magnitude of the HVR generally increases with age, so CH could blunt the HVR by delaying this process. Accordingly, we predicted that CH would have different effects on the respiratory control of neonatal rats if initiated at birth versus initiated later in postnatal development (i.e., after the HVR has had time to mature). Rats had blunted ventilatory and carotid body responses to hypoxia whether CH (12 % O2) occurred for the first postnatal week (P0 to P7) or second postnatal week (P7 to P14). However, if initiated at P0, CH also caused the HVR to retain the "biphasic" shape characteristic of newborn mammals; CH during the second postnatal week did not result in a biphasic HVR. POMHEX CH from birth delayed the transition from a biphasic HVR to a sustained HVR until at least P9-11, but the HVR attained a sustained (albeit blunted) phenotype by P13-15. Since delayed maturation of the HVR did not completely explain the blunted HVR, we tested the alternative hypothesis that the blunted HVR was caused by an inflammatory response to CH. Daily administration of the anti-inflammatory drug ibuprofen (4 mg kg-1, i.p.) did not alter the effects of CH on the HVR. Collectively, these data suggest that CH blunts the HVR in neonatal rats by impairing carotid body responses to hypoxia and by delaying (but not preventing) postnatal maturation of the biphasic HVR. The mechanisms underlying this plasticity require further investigation. BACKGROUND Epithelial-mesenchymal transformation (EMT) is a central mechanism for the occurrence and development of pulmonary fibrosis. Therefore, to identify the key target molecules regulating the EMT process is considered as an important direction for the prevention and treatment of pulmonary fibrosis. Transglutaminase 2 (TG2) has been recently found to play an important role in the regulation of inflammation and the generation of extracellular matrix. Here, our study focuses on the roles of TG2 in pulmonary fibrosis and EMT. METHODS at first, the expression of TG2 and the EMT-related markers like E-cadherin, Vimentin, and α-SMA were detected with Western Blotting, immunohistochemistry and other methods in the mice with pulmonary fibrosis induced by bleomycin. Further, MLE 12 cells were used to study the effects on EMT of the inhibition of TG2 in vitro. Finally, GK921, an inhibitor against TG2, was used to show its function in both prevention and treatment of pulmonary fibrosis induced by bleomycin in mice. RESULTS bleomycin succeeded to induce pulmonary fibrosis in mice, with increased TG2 expression, EMT and Akt activation. Knock-down of TG2 by siRNA technique in MLE 12 cell (a mouse alveolar epithelial cell line) and GK921 (an inhibitor of TG2) all inhibited the EMT process, however SC79, an activator of Akt rescued above inhibition. Finally, GK921 alleviated pulmonary fibrosis in mice induced by bleomycin. CONCLUSION Blocking TG2 reduces bleomycin-induced pulmonary fibrosis in mice via inhibiting EMT. Saturated fatty acids (SFA) have been known to trigger inflammatory signaling in metabolic tissues; however, the effects of specific SFAs in the intestinal epithelium have not been well studied. Several previous studies have implicated disruptions in sphingolipid metabolism by oversupply of SFAs in inflammatory process. Also, our previous studies have implicated sphingosine kinase 1 (SK1) and its product sphingosine-1-phosphate (S1P) as having key roles in the regulation of inflammatory processes in the intestinal epithelium. Therefore, to define the role for specific SFAs in inflammatory responses in intestinal epithelial cells, we examined myristate (C140) and palmitate (C160). Myristate, but not palmitate, significantly induced the pro-inflammatory cytokine tumor necrosis factor α (TNFα), and it was SK1-dependent. Interestingly, myristate-induced TNFα expression was not suppressed by inhibition of S1P receptors (S1PRs), hinting at a potential novel intracellular target of S1P. Additionally, myristate regulated the expression of TNFα via JNK activation in an SK1-dependent manner, suggesting a novel S1PR-independent target as a mediator between SK1 and JNK in response to myristate. Lastly, a myristate-enriched milk fat-based diet (MFBD) increased expression of TNFα in colon tissues and elevated the S1P to sphingosine ratio, demonstrating the potential of myristate-involved pathobiologies in intestinal tissues. Taken together our studies suggest that myristate regulates the expression of TNFα in the intestinal epithelium via regulation of SK1 and JNK. Banana is one of the most economically important fruit crops worldwide. Genetic improvement in banana is a challenging task due to its parthenocarpic nature and triploid genome. Genetic modification of crops via the CRISPR/Cas9 module has emerged as a promising tool to develop important traits. In the present work, a CRISPR/Cas9-based approach was used to develop the β-carotene-enriched Cavendish banana cultivar (cv.) Grand Naine (AAA genome). The fifth exon of the lycopene epsilon-cyclase (LCYε) gene was targeted. The targeting specificity of the designed guide-RNA was also tested by its ability to create indels in the LCYε gene at the A genome of cv. Rasthali (AAB genome). Sequence analysis revealed multiple types of indels in the genomic region of Grand Naine LCYε (GN-LCYε). Metabolic profiling of the fruit pulp of selected edited lines showed enhanced accumulation of β-carotene content up to 6-fold (~24 μg/g) compared with the unedited plants. These lines also showed either an absence or a drastic reduction in the levels of lutein and α-carotene, suggesting metabolic reprogramming, without any significant effect on the agro-morphological parameters. In addition, differential expression of carotenoid pathway genes was observed in the edited lines in comparison to unedited plants. Overall, this is the first report in banana to improve nutritional trait by using a precise genome editing approach. MiR-222 and miR-126 are associated with asbestos exposure and the ensuing malignancy, but the mechanism(s) of their regulation remain unclear. We evaluated the mechanism by which asbestos regulates miR-222 and miR-126 expression in the context of cancer etiology. An 'in vitro' model of carcinogen-induced cell transformation was used based on exposing bronchial epithelium BEAS-2B cells to three different carcinogens including asbestos. Involvement of the EGFR pathway and the role of epigenetics have been investigated in carcinogen-transformed cells and in malignant mesothelioma, a neoplastic disease associated with asbestos exposure. Increased expression of miR-222 and miR-126 were found in asbestos-transformed cells, but not in cells exposed to arsenic and chrome. Asbestos-mediated activation of the EGFR pathway and macrophages-induced inflammation resulted in miR-222 upregulation, which was reversed by EGFR inhibition. Conversely, asbestos-induced miR-126 expression was affected neither by EGFR modulation nor inflammation.