Gomezwilson7687

From DigitalMaine Transcription Project
Jump to: navigation, search

Single genetic mutations predispose to very early onset inflammatory bowel disease (VEO-IBD). Here, we identify a de novo duplication of the 10p15.1 chromosomal region, including the IL2RA locus, in a 2-year-old girl with treatment-resistant pancolitis that was brought into remission by colectomy. Strikingly, after colectomy while the patient was in clinical remission and without medication, the peripheral blood CD4CD8 ratio was constitutively high and CD25 expression was increased on circulating effector memory, Foxp3+, and Foxp3neg CD4+ T cells compared to healthy controls. This high CD25 expression increased IL-2 signaling, potentiating CD4+ T-cell-derived IFNγ secretion after T-cell receptor (TCR) stimulation. selleck chemicals Restoring CD25 expression using the JAK1/3-inhibitor tofacitinib controlled TCR-induced IFNγ secretion in vitro. As diseased colonic tissue, but not the unaffected duodenum, contained mainly CD4+ T cells with a prominent IFNγ-signature, we hypothesize that local microbial stimulation may have initiated colonic disease. Overall, we identify that duplication of the IL2RA locus can associate with VEO-IBD and suggest that increased IL-2 signaling predisposes to colonic intestinal inflammation.Breast implant anaplastic large cell lymphoma (ALCL) is a T-cell neoplasm arising around textured breast implants that was recognized recently as a distinct entity by the World Health Organization. Rarely, other types of lymphoma have been reported in patients with breast implants, raising the possibility of a pathogenetic relationship between breast implants and other types of lymphoma. We report eight cases of Epstein-Barr virus (EBV)-positive large B-cell lymphoma associated with breast implants. One of these cases was invasive, and the other seven neoplasms were noninvasive and showed morphologic overlap with breast implant ALCL. All eight cases expressed B-cell markers, had a non-germinal center B-cell immunophenotype, and were EBV+ with a latency type III pattern of infection. We compared the noninvasive EBV+ large B-cell lymphoma cases with a cohort of breast implant ALCL cases matched for clinical and pathologic stage. The EBV+ large B-cell lymphoma cases more frequently showed a thicker capsule, and more often were associated with calcification and prominent lymphoid aggregates outside of the capsule. The EBV+ B-cell lymphoma cells were more often arranged within necrotic fibrinoid material in a layered pattern. We believe that this case series highlights many morphologic similarities between EBV+ large B-cell lymphoma and breast implant ALCL. The data presented suggest a pathogenetic role for breast implants (as well as EBV) in the pathogenesis of EBV+ large B-cell lymphoma. We also provide some histologic findings useful for distinguishing EBV+ large B-cell lymphoma from breast implant ALCL in this clinical setting.Genome-wide association studies (GWAS) have become a standard approach for exploring the genetic basis of phenotypic variation. However, correlation is not causation, and only a tiny fraction of all associations have been experimentally confirmed. One practical problem is that a peak of association does not always pinpoint a causal gene, but may instead be tagging multiple causal variants. In this study, we reanalyze a previously reported peak associated with flowering time traits in Swedish Arabidopsis thaliana population. The peak appeared to pinpoint the AOP2/AOP3 cluster of glucosinolate biosynthesis genes, which is known to be responsible for natural variation in herbivore resistance. Here we propose an alternative hypothesis, by demonstrating that the AOP2/AOP3 flowering association can be wholly accounted for by allelic variation in two flanking genes with clear roles in regulating flowering NDX1, a regulator of the main flowering time controller FLC, and GA1, which plays a central role in gibberellin synthesis and is required for flowering under some conditions. In other words, we propose that the AOP2/AOP3 flowering-time association may be yet another example of a spurious, "synthetic" association, arising from trying to fit a single-locus model in the presence of two statistically associated causative loci. We conclude that caution is needed when using GWAS for fine-mapping.Human overexploitation of natural resources has placed conservation and management as one of the most pressing challenges in modern societies, especially in regards to highly vulnerable marine ecosystems. In this context, cryptic species are particularly challenging to conserve because they are hard to distinguish based on morphology alone, and thus it is often unclear how many species coexist in sympatry, what are their phylogenetic relationships and their demographic history. We answer these questions using morphologically similar species of the genus Mugil that are sympatric in the largest coastal Marine Protected Area in the Tropical Southwestern Atlantic marine province. Using a sub-representation of the genome, we show that individuals are assigned to five highly differentiated genetic clusters that are coincident with five mitochondrial lineages, but discordant with morphological information, supporting the existence of five species with conserved morphology in this region. A lack of admixed individuals is consistent with strong genetic isolation between sympatric species, but the most likely species tree suggests that in one case speciation has occurred in the presence of interspecific gene flow. Patterns of genetic diversity within species suggest that effective population sizes differ up to two-fold, probably reflecting differences in the magnitude of population expansions since species formation. Together, our results show that strong morphologic conservatism in marine environments can lead to species that are difficult to distinguish morphologically but that are characterized by an independent evolutionary history, and thus that deserve species-specific management strategies.Early identification and treatment significantly improve clinical outcomes of psychotic disorders. Recent studies identified protein components of the complement and coagulation systems as key pathways implicated in psychosis. These specific protein alterations are integral to the inflammatory response and can begin years before the onset of clinical symptoms of psychotic disorder. Critically, they have recently been shown to predict the transition from clinical high risk to first-episode psychosis, enabling stratification of individuals who are most likely to transition to psychotic disorder from those who are not. This reinforces the concept that the psychosis spectrum is likely a central nervous system manifestation of systemic changes and highlights the need to investigate plasma proteins as diagnostic or prognostic biomarkers and pathophysiological mediators. In this review, we integrate evidence of alterations in proteins belonging to the complement and coagulation protein systems, including the coagulation, anticoagulation, and fibrinolytic pathways and their dysregulation in psychosis, into a consolidated mechanism that could be integral to the progression and manifestation of psychosis.