Hegelundjessen2740

From DigitalMaine Transcription Project
Jump to: navigation, search

The electronic and optical properties of (InxGa1-x)2O3 alloys are highly tunable, giving rise to a myriad of applications including transparent conductors, transparent electronics, and solar-blind ultraviolet photodetectors. Here, we investigate these properties for a high quality pulsed laser deposited film which possesses a lateral cation composition gradient (0.01 ≤ x ≤ 0.82) and three crystallographic phases (monoclinic, hexagonal, and bixbyite). The optical gaps over this composition range are determined, and only a weak optical gap bowing is found (b = 0.36 eV). The valence band edge evolution along with the change in the fundamental band gap over the composition gradient enables the surface space-charge properties to be probed. This is an important property when considering metal contact formation and heterojunctions for devices. A transition from surface electron accumulation to depletion occurs at x ∼ 0.35 as the film goes from the bixbyite In2O3 phase to the monoclinic β-Ga2O3 phase. The electronic structure of the different phases is investigated by using density functional theory calculations and compared to the valence band X-ray photoemission spectra. Finally, the properties of these alloys, such as the n-type dopability of In2O3 and use of Ga2O3 as a solar-blind UV detector, are understood with respect to other common-cation compound semiconductors in terms of simple chemical trends of the band edge positions and the hydrostatic volume deformation potential.We experimentally determine the redox reactions during (de-)lithiation of the SnO2 working electrode cycled in (Li2S)3-P2S5 solid electrolyte by combining operando X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy. Specifically, we have accurately determined the composition changes in the SnO2 working electrode upon cycling and identified the onset voltage formation of the various phases. Starting from the open-circuit potential, we find that, on lithiation, the Sn M-edge absorption spectra reveal unequivocally the formation of SnOx (x ≤ 1) and Li2SnO3 already at a potential of 1.6 V vs Li+/Li, while Sn 3d/Sn 4d, O 1s, and Li 1s core-level spectra show the formation of Sn0 and Li2O along the first potential plateau at 0.8 V vs Li+/Li and of Li8SnO6 at lower potentials. Below 0.6 V vs Li+/Li, an alloying reaction takes place until the end of the lithiation process at 0.05 V vs Li+/Li, as shown by the formation of LixSn. During delithiation, both the conversion and alloying reactions are found to be partially reversible, starting by the re-formation of Sn0 at 0.3 V vs Li+/Li and followed by the re-formation of Li8SnO6 and SnOx above 0.5 V vs Li+/Li. The conversion and alloying reactions are found to overlap during both lithiation and delithiation. Finally, we validate the theoretical prediction for the SnO2 conversion and alloy (de-)lithiation reactions and clarify the open questions about their reaction mechanism.A recently discovered post-translational modification of histone proteins is the irreversible proteolytic clipping of the histone N-terminal tail domains. This modification is involved in the regulation of various biological processes, including the DNA damage response. In this work, we used chemical footprinting to characterize the structural alterations to nucleosome core particles (NCPs) that result from a lack of a histone H2B or H3 tail. We also examine the influence of these histone tails on excision of the mutagenic lesion 1,N6-ethenoadenine (εA) by the repair enzyme alkyladenine DNA glycosylase. We found that the absence of the H2B or H3 tail results in altered DNA periodicity relative to that of native NCPs. We correlated these structural alterations to εA excision by utilizing a global analysis of 21 εA sites in NCPs and unincorporated duplex DNA. buy MALT1 inhibitor In comparison to native NCPs, there is enhanced excision of εA in tailless H2B NCPs in regions that undergo DNA unwrapping. This enhanced excision is not observed for tailless H3 NCPs; rather, excision is inhibited in more static areas of the NCP not prone to unwrapping. Our results support in vivo observations of alkylation damage profiles and the potential role of tail clipping as a mechanism for overcoming physical obstructions caused by packaging in NCPs but also reveal the potential inhibition of repair by tail clipping in some locations. Taken together, these results further our understanding of how base excision repair can be facilitated or diminished by histone tail removal and contribute to our understanding of the underlying mechanism that leads to mutational hot spots.All-inorganic perovskite CsPbIBr2 materials are promising for optoelectronics, owing to their upgraded ambient stability and suitable bandgap. Unfortunately, they generally undergo severe halide phase segregation under illumination, which creates many iodide-rich and bromide-rich domains coupled with significant deterioration of their optical/electrical properties. Herein, we propose a facile and effective strategy to overcome the halide phase segregation in the CsPbIBr2 film by modifying its crystalline grains with poly(methyl methacrylate) (PMMA) for the first time. Such a strategy is proceeded by covering a PMMA layer on the substrate before deposition of the CsPbIBr2 film. Further investigations manifest that the CsPbIBr2 film with PMMA possesses larger grains, better crystallinity, and fewer traps than the one without any modification. Moreover, it holds the nearly eliminated halide phase segregation. Therefore, the carbon-based, all-inorganic CsPbIBr2 perovskite solar cell exhibits the much suppressed photocurrent hysteresis, coupled with an outstanding efficiency of 9.21% and a high photovoltage of 1.307 V.In the pandemic coronavirus disease 2019 (COVID-19) era, the need to use preventive-curative treatments is compelling. A series of non-pharmacological compounds, including supplements (oligoelements and vitamins), probiotics, and nutraceuticals, might affect the risk of COVID-19 or reducing clinical severity. Non-pharmacological remedies are easily available and usually have no relevant side effects. There is evidence that bacterial and molecular substances may potentiate the immune system against respiratory viruses. Moreover, these compounds might exert essential anti-inflammatory and antioxidant activity in COVID-19. Furthermore, nasal lavage may be an additional resource for reducing the viral load and restore the integrity of respiratory patency. Therefore, preventive courses using non-pharmacological remedies could be prescribed to reinforce the immune response and adequate treatment of upper respiratory infection with natural compounds could be considered a reasonable way to manage people in the pandemic COVID-19 era.