Hollisshannon4553
Several reviews have reported on the role of polyamines in modulating salt stress plant response and the capacity to enhance PA synthesis upon salt stress exposure, and it is known that NO and PAs interact under salinity. In this review, we focus on the role of NO in plant response to salt stress, paying particular attention to the interaction between NO and PAs.The aim of this study was to investigate effects of the hydrogen-rich water (HRW) on the vegetable growth, and explore the possibility of applying HRW for protected cultivation of vegetables. Results showed that compared with control, HRW treatment significantly promoted fresh weight, hypocotyl length and root length of mung bean seedlings. The strongest stimulation was observed for 480 μM H2 (60% of saturated HRW concentration) treatment. This concentration was used in the following experiments. The enhanced cell elongation was correlated with the changes in the level of endogenous phytohormones. In the dark-grown hypocotyls and roots of mung bean seedlings, HRW significantly increased the content of IAA and GA3. Addition of GA3 enhanced the hypocotyl elongation only. uniconazole, an inhibitor of GA3 biosynthesis, inhibited HRW-induced hypocotyl elongation, but did not affect root elongation. read more Exogenous application of IAA promoted HRW effects on elongation of both the hypocotyl and the root, while the IAA biosynthesis inhibitor TIBA negated the above affects. The general nature of HRW-induced growth-promoting effects was further confirmed in experiments involving cucumber and radish seedlings. Taken together, HRW treatment promoted growth of seedlings, by stimulating elongation of hypocotyl and root cells, via HRW-induced increase in GA and IAA content in the hypocotyl and the root respectively.Testing drugs in isogenic rodent strains to satisfy regulatory requirements is insufficient for derisking organ toxicity in genetically diverse human populations; in contrast, advances in mouse genetics can help mitigate these limitations. Compared to the expensive and slower in vivo testing, in vitro cultures enable the testing of large compound libraries toward prioritizing lead compounds and selecting an animal model with human-like response to a compound. In the case of the liver, a leading cause of drug attrition, isolated primary mouse hepatocytes (PMHs) rapidly decline in function within current culture platforms, which restricts their use for assessing the effects of longer-term compound exposure. Here we addressed this challenge by fabricating mouse micropatterned cocultures (mMPCC) containing PMHs and 3T3-J2 murine embryonic fibroblasts that displayed 4 weeks of functions; mMPCCs created from either C57Bl/6J or CD-1 PMHs outperformed collagen/Matrigel™ sandwich-cultured hepatocyte monocultures by ∼143-fold, 413-fold, and 10-fold for albumin secretion, urea synthesis, and cytochrome P450 activities, respectively. Such functional longevity of mMPCCs enabled in vivo relevant comparisons across strains for CYP induction and hepatotoxicity following exposure to 14 compounds with subsequent comparison to responses in primary human hepatocytes (PHHs). In conclusion, mMPCCs display high levels of major liver functions for several weeks and can be used to assess strain- and species-specific compound effects when used in conjunction with responses in PHHs. Ultimately, mMPCCs can be used to leverage the power of mouse genetics for characterizing subpopulations sensitive to compounds, characterizing the degree of interindividual variability, and elucidating genetic determinants of severe hepatotoxicity in humans.Purpose American Academy of Pediatric Dentistry guidelines recommend treatment of primary teeth with 38 percent silver diamine fluoride (SDF) as a noninvasive option to arrest active dental caries lesions. A significant outcome of SDF treatment are lesions that clinically harden and become more resistant to further decay. Many practicing dentists believe that this increased hardening is due to the reaction of silver and fluoride with carious dentin. The purpose of this study was to focus on the structural and chemical effects of silver diamine fluoride treatment on the native tooth. Methods In SDF-treated cavitated dentin lesions in teeth subsequently extracted for orthodontic reasons, the authors observed continuous, filamentous silver densities formed in situ from 50 to 2,100 μm in length and 0.25 to 7.0 μm in diameter using high-resolution synchrotron X-ray microcomputer tomography and field emission scanning electron microscopy. These "microwires" fill voids in the lesion caused by disease and permeate through surrounding dentinal tubules. Results Spectroscopy confirmed that the chemical composition of the observed microwires is predominantly silver. Conclusions These observations suggest mechanistic explanations for the structural reinforcement of carious dentin in addition to remineralization. It is hypothesized that silver diamine fluoride may achieve its antimicrobial functions by biochemical interactions and through its inherent ability to integrate into the native tooth structure.Purpose The purpose of this study was to measure the shear bond strength (SBS) of glass ionomer cement (GIC) to artificial carious dentin with and without silver diamine fluoride (SDF) treatment. Methods Permanent molars were sectioned and demineralized to create artificial carious lesions. In five groups, the demineralization of dentin, application of SDF, use of conditioner, and elapsed time between the placement of SDF and restoration were tested for differences in SBS using an UltraTester machine. Statistical analysis was done using the Kruskal-Wallis test and Tukey-Kramer multiple comparison tests. Results The highest bond strength was found when GIC was placed on conditioned and demineralized dentin treated with SDF one week earlier. Treatment with SDF and use of conditioner did not statistically affect the SBS of GIC to demineralized dentin. Statistically significant increases in bond strength were found when one week elapsed between SDF application and GIC placement. The lowest bond strength was found with immediate GIC application onto SDF-treated demineralized dentin.