Hurststrong5754

From DigitalMaine Transcription Project
Jump to: navigation, search

05). The PDT and ECYL groups had higher μTBS values compared with the CHX and NaOCl groups (p < 0.05), and all disinfection protocols decreased the bond strength to CAD (p < 0.05).

The microtensile bond strength of disinfected CAD was greater with Er,CrYSGG laser and photodynamic therapy treatment than with chemical disinfectants. Giomer may enhance the bond strength to CAD, which has a weaker bonding potential than sound dentin due to structural differences. However, disinfection protocols adversely affect adhesion between the restorative material and CAD.

The microtensile bond strength of disinfected CAD was greater with Er,CrYSGG laser and photodynamic therapy treatment than with chemical disinfectants. Giomer may enhance the bond strength to CAD, which has a weaker bonding potential than sound dentin due to structural differences. However, disinfection protocols adversely affect adhesion between the restorative material and CAD.Intracranial EEG is the current gold standard technique for localizing seizures for surgery, but it can be insensitive to tangential dipole or distant sources. Electrical Impedance Tomography (EIT) offers a novel method to improve coverage and seizure onset localization. The feasibility of EIT has been previously assessed in a computer simulation, which revealed an improved accuracy of seizure detection with EIT compared to intracranial EEG. In this study, slow impedance changes, evoked by cell swelling occurring over seconds, were reconstructed in real time by frequency division multiplexing EIT using depth and subdural electrodes in a swine model of epilepsy. EIT allowed to generate repetitive images of ictal events at similar time course to fMRI but without its significant limitations. selleck chemical EIT was recorded with a system consisting of 32 parallel current sources and 64 voltage recorders. Seizures triggered with intracranial injection of benzylpenicillin (BPN) in five pigs caused a repetitive peak impedance increase of 3.4 ± 1.5 mV and 9.5 ± 3% (N =205 seizures); the impedance signal change was seen already after a single, first seizure. EIT enabled reconstruction of the seizure onset 9 ± 1.5 mm from the BPN cannula and 7.5 ± 1.1 mm from the closest SEEG contact (p less then 0.05, n =37 focal seizures in three pigs) and it could address problems with sampling error in intracranial EEG. The amplitude of the impedance change correlated with the spread of the seizure on the SEEG (p less then less then 0.001, n =37). The results presented here suggest that combining a parallel EIT system with intracranial EEG monitoring has a potential to improve the diagnostic yield in epileptic patients and become a vital tool in improving our understanding of epilepsy.Lesions to posterior temporo-parietal brain regions are associated with deficits in perception of global, hierarchical shapes, but also with impairments in the processing of objects presented under demanding viewing conditions. Evidence from neuroimaging studies and lesion patterns observed in patients with simultanagnosia and agnosia for object orientation suggest similar brain regions to be involved in perception of global shapes and processing of objects in atypical ('non-canonical') orientation. In a localizer experiment, we identified individual temporo-parietal brain areas involved in global shape perception and found significantly higher BOLD signals during the processing of non-canonical compared to canonical objects. In a multivariate approach, we demonstrated that posterior temporo-parietal brain areas show distinct voxel patterns for non-canonical and canonical objects and that voxel patterns of global shapes are more similar to those of objects in non-canonical compared to canonical viewing conditions. These results suggest that temporo-parietal brain areas are not only involved in global shape perception but might serve a more general mechanism of complex object perception. Our results challenge a strict attribution of object processing to the ventral visual stream by suggesting specific dorsal contributions in more demanding viewing conditions.While mirror neurons have been found in several monkey brain regions, their existence in the human brain is still largely inferred from indirect non-invasive measurements like functional MRI. It has been proposed that, beyond showing overlapping brain responses during action observation and execution tasks, candidate mirror neuron regions should demonstrate cross-modal action specificity, in line with a defining physiological characteristic of these neurons in the monkey brain. Although cross-modal fMRI adaptation has been put forward as a suited method to test this key feature of cross-modal action specificity in the human brain, so far, the overall usefulness of this technique to demonstrate mirror neuron activity remains unclear. To date, it has never been tested to what extent monkey brain regions known to house mirror neurons, would yield uni- and/or cross-modal fMRI adaptation effects. We therefore performed an fMRI adaptation experiment while male rhesus macaques either performed or observed two different goal-directed hand actions. Executing grasp/lift or touch/press actions in the dark, as well as observing videos of these monkey hand actions, yielded robust responses throughout the brain, including overlapping fMRI responses in parietal and premotor mirror neuron regions. Uni-modal adaptation effects were mostly restricted to the visual modality and the early visual cortices. Both frequentist and Bayesian statistical analyses however suggested no evidence for cross-modal fMRI adaptation effects in monkey parietal and premotor mirror neuron regions. Overall, these findings suggest monkey mirror neuron activity does not readily translate into cross-modal repetition suppression effects that can be detected by fMRI.Since the seminal works by Brodmann and contemporaries, it is well-known that different brain regions exhibit unique cytoarchitectonic and myeloarchitectonic features. Transferring the approach of classifying brain tissues - and other tissues - based on their intrinsic features to the realm of magnetic resonance (MR) is a longstanding endeavor. In the 1990s, atlas-based segmentation replaced earlier multi-spectral classification approaches because of the large overlap between the class distributions. Here, we explored the feasibility of performing global brain classification based on intrinsic MR features, and used several technological advances ultra-high field MRI, q-space trajectory diffusion imaging revealing voxel-intrinsic diffusion properties, chemical exchange saturation transfer and semi-solid magnetization transfer imaging as a marker of myelination and neurochemistry, and current neural network architectures to analyze the data. In particular, we used the raw image data as well to increase the number of input features.