Lopezkaplan1990

From DigitalMaine Transcription Project
Jump to: navigation, search

Metabolic syndrome is a cluster of metabolic risk factors, characterized by abdominal obesity, dyslipidemia, low levels of high-density lipoprotein cholesterol (HDL-c), hypertension, and insulin resistance. Lifestyle modifications, especially dietary habits, are the main therapeutic strategy for the treatment and management of metabolic syndrome, but the most effective dietary pattern for its management has not been established. Specific dietary modifications, such as improving the quality of the foods or changing macronutrient distribution, showed beneficial effects on metabolic syndrome conditions and individual parameters. On comparing low-fat and restricted diets, the scientific evidence supports the use of the Mediterranean Dietary Approaches to Stop Hypertension (DASH) diet intervention as the new paradigm for metabolic syndrome prevention and treatment. The nutritional distribution and quality of these healthy diets allows health professionals to provide easy-to-follow dietary advice without the need for restricted diets. Nonetheless, energy-restricted dietary patterns and improvements in physical activity are crucial to improve the metabolic disturbances observed in metabolic syndrome patients.COVID-19, caused by SARS-CoV-2 virus, emerged as a pandemic disease posing a severe threat to global health. To date, sporadic studies have demonstrated that innate immune mechanisms, specifically neutrophilia, NETosis, and neutrophil-associated cytokine responses, are involved in COVID-19 pathogenesis; however, our understanding of the exact nature of this aspect of host-pathogen interaction is limited. Here, we present a detailed dissection of the features and functional profiles of neutrophils, dendritic cells, and monocytes in COVID-19. We portray the crucial role of neutrophils as drivers of hyperinflammation associated with COVID-19 disease via the shift towards their immature forms, enhanced degranulation, cytokine production, and augmented interferon responses. We demonstrate the impaired functionality of COVID-19 dendritic cells and monocytes, particularly their low expression of maturation markers, increased PD-L1 levels, and their inability to upregulate phenotype upon stimulation. In summary, our work highlights important data that prompt further research, as therapeutic targeting of neutrophils and their associated products may hold the potential to reduce the severity of COVID-19.Skeletal muscle has a remarkable plasticity, and its phenotype is strongly influenced by hormones, transcription factors, and physical activity. However, whether skeletal phenotype can be oriented or not during early embryonic stages has never been investigated. Here, we report that pyruvate as the only source of carbohydrate in the culture medium of mouse one cell stage embryo influenced the establishment of the muscular phenotype in adulthood. We found that pyruvate alone induced changes in the contractile phenotype of the skeletal muscle in a sexually dependent manner. For male mice, a switch to a more glycolytic phenotype was recorded, whereas, in females, the pyruvate induced a switch to a more oxidative phenotype. In addition, the influence of pyruvate on the contractile phenotypes was confirmed in two mouse models of muscle hypertrophy the well-known myostatin deficient mouse (Mstn-/-) and a mouse carrying a specific deletion of p43, a mitochondrial triiodothyronine receptor. Finally, to understand the link between these adult phenotypes and the early embryonic period, we assessed the levels of two histone H3 post-translational modifications in presence of pyruvate alone just after the wave of chromatin reprogramming specific of the first cell cycle. We showed that H3K4 acetylation level was decreased in Mstn-/- 2-cell embryos, whereas no difference was found for H3K27 trimethylation level, whatever the genotype. These findings demonstrate for the first time that changes in the access of energy substrate during the very first embryonic stage can induce a precocious orientation of skeletal muscle phenotype in adulthood.Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. Luminespib research buy of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.Triple negative breast cancer (TNBC) is one of the most aggressive types of breast cancer. Owing to the absenteeism of hormonal receptors expressed at the cancerous breast cells, hormonal therapies and other medications targeting human epidermal growth factor receptor 2 (HER2) are ineffective in TNBC patients, making traditional chemotherapeutic agents the only current appropriate regimen. #link# Patients' predisposition to relapse and metastasis, chemotherapeutics' cytotoxicity and resistance and poor prognosis of TNBC necessitates researchers to investigate different novel-targeted therapeutics. The role of small interfering RNA (siRNA) in silencing the genes/proteins that are aberrantly overexpressed in carcinoma cells showed great potential as part of TNBC therapeutic regimen. However, targeting specificity, siRNA stability, and delivery efficiency cause challenges in the progression of this application clinically. Nanotechnology was highlighted as a promising approach for encapsulating and transporting siRNA with high efficiency-low toxicity profile. Advances in preclinical and clinical studies utilizing engineered siRNA-loaded nanotherapeutics for treatment of TNBC were discussed. Specific and selective targeting of diverse signaling molecules/pathways at the level of tumor proliferation and cell cycle, tumor invasion and metastasis, angiogenesis and tumor microenvironment, and chemotherapeutics' resistance demonstrated greater activity via integration of siRNA-complexed nanoparticles.