Mclaughlintang0279
Radiation mapping, through the detection of ionising gamma-ray emissions, is an important technique used across the nuclear industry to characterise environments over a range of length scales. In complex scenarios, the precise localisation and activity of radiological sources becomes difficult to determine due to the inability to directly image gamma photon emissions. This is a result of the potentially unknown number of sources combined with uncertainties associated with the source-detector separation-causing an apparent 'blurring' of the as-detected radiation field relative to the true distribution. Accurate delimitation of distinct sources is important for decommissioning, waste processing, and homeland security. Therefore, methods for estimating the precise, 'true' solution from radiation mapping measurements are required. Herein is presented a computational method of enhanced radiological source localisation from scanning survey measurements conducted with a robotic arm. The procedure uses an experimentally derived Detector Response Function (DRF) to perform a randomised-Kaczmarz deconvolution from robotically acquired radiation field measurements. The performance of the process is assessed on radiation maps obtained from a series of emulated waste processing scenarios. The results demonstrate a Projective Linear Reconstruction (PLR) algorithm can successfully locate a series of point sources to within 2 cm of the true locations, corresponding to resolution enhancements of between 5× and 10×.Surface-enhanced Raman spectroscopy (SERS) technology is an attractive method for the prompt and accurate on-site screening of illicit drugs. selleck chemical As portable Raman systems are available for on-site screening, the readiness of SERS technology for sensing applications is predominantly dependent on the accuracy, stability and cost-effectiveness of the SERS strip. An atmospheric-pressure plasma-assisted chemical deposition process that can deposit an even distribution of nanogold particles in a one-step process has been developed. The process was used to print a nanogold film on a paper-based substrate using a HAuCl4 solution precursor. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the gold has been fully reduced and that subsequent plasma post-treatment decreases the carbon content of the film. Results for cocaine detection using this substrate were compared with two commercial SERS substrates, one based on nanogold on paper and the currently available best commercial SERS substrate based on an Ag pillar structure. A larger number of bands associated with cocaine was detected using the plasma-printed substrate than the commercial substrates across a range of cocaine concentrations from 1 to 5000 ng/mL. A detection limit as low as 1 ng/mL cocaine with high spatial uniformity was demonstrated with the plasma-printed substrate. It is shown that the plasma-printed substrate can be produced at a much lower cost than the price of the commercial substrate.The aim of this work was to obtain chicken egg ovalbumin hydrolysates using aspartic proteinases present in extracts from the artichoke flower (Cynara scolymus L.) and evaluate their antioxidant, antimicrobial, and angiotensin I-converting enzyme (ACE) inhibitory activity in vitro. Hydrolysis time and molecular weight ( less then 3 kDa) had a significant influence on the hypertensive and antioxidant activity of the hydrolysates. The less then 3 kDa fraction of the 16 h hydrolysate had an ACE inhibitory activity with an IC50 of 64.06 µg peptides/mL. The fraction less then 3 kDa of ovalbumin hydrolysate at 2 h of hydrolysis showed a DPPH radical scavenging activity of 30.27 µM of Trolox equivalents/mg peptides. The fraction less then 3 kDa of the hydrolysate of 16 h had an ABTS+ caption activity of 4.30 mM of Trolox equivalents/mg peptides. The fraction less then 3 kDa of the hydrolysate of 2 h had an iron (II) chelating activity of 32.18 µg peptides/mL. From the peptide sequences identified in the hydrolysates, we detected four peptides (from the BIOPEP database) that were already in their bioactive form (IAAEVYEHTEGSTTSY, HLFGPPGKKDPV, PIAAEVYEHTEGSTTSY, and YAEERYPIL), and are reported to display antioxidant and ACE inhibitory activity.The Pulmonaria species (lungwort) are edible plants and traditional remedies for different disorders of the respiratory system. Our work covers a comparative study on biological actions in human blood plasma and cyclooxygenase-2 (COX-2) -inhibitory properties of plant extracts (i.e., phenolic-rich fractions) originated from aerial parts of P. obscura Dumort. and P. officinalis L. Phytochemical profiling demonstrated the abundance of phenolic acids and their derivatives (over 80% of the isolated fractions). Danshensu conjugates with caffeic acid, i.e., rosmarinic, lithospermic, salvianolic, monardic, shimobashiric and yunnaneic acids were identified as predominant components. The examined extracts (1-100 µg/mL) partly prevented harmful effects of the peroxynitrite-induced oxidative stress in blood plasma (decreased oxidative damage to blood plasma components and improved its non-enzymatic antioxidant capacity). The cellular safety of the extracts was confirmed in experimental models of blood platelets and peripheral blood mononuclear cells. COX-2 inhibitor screening evidently suggested a stronger activity of P. officinalis (IC50 of 13.28 and 7.24 µg/mL, in reaction with synthetic chromogen and physiological substrate (arachidonic acid), respectively). In silico studies on interactions of main components of the Pulmonaria extracts with the COX-2 demonstrated the abilities of ten compounds to bind with the enzyme, including rosmarinic acid, menisdaurin, globoidnan A and salvianolic acid H.Light-sensitive polymeric micelles have recently emerged as promising drug delivery systems for spatiotemporally controlled release of payload at target sites. Here, we developed diazonaphthoquinone (DNQ)-conjugated micellar nanoparticles that showed a change in polarity of the micellar core from hydrophobic to hydrophilic under UV light, releasing the encapsulated anti-cancer drug, doxetaxel (DTX). The micelles exhibited a low critical micelle concentration and high stability in the presence of bovine serum albumin (BSA) solution due to the hydrophobic and π-π stacking interactions in the micellar core. Cell studies showed enhanced cytotoxicity of DTX-loaded micellar nanoparticles upon irradiation. The enhanced stability would increase the circulation time of the micellar nanoparticles in blood, and enhance the therapeutic effectiveness for cancer therapy.