Tangekarstensen2594
tely leading to growth in perceived and realized confidence and ability to critically review research articles.Clathrin-coated vesicles mediate trafficking of proteins and nutrients in the cell and between organelles. Proteins included in the clathrin-coated vesicles (CCVs) category include clathrin heavy chain (CHC), clathrin light chain (CLC), and a variety of adaptor protein complexes. Much is known about the structures of the individual CCV components, but data are lacking about the structures of the fully assembled complexes together with membrane and in complex with cargo. Here, we determined the structures of natively assembled CCVs in a variety of geometries. We show that the adaptor β2 appendages crosslink adjacent CHC β-propellers and that the appendage densities are enriched in CCV hexagonal faces. We resolve how adaptor protein 2 and other associated factors in hexagonal faces form an assembly hub with an extensive web of interactions between neighboring β-propellers and propose a structural model that explains how adaptor binding can direct the formation of pentagonal and hexagonal faces.Clathrin-mediated endocytosis (CME) is crucial for modulating the protein composition of a cell's plasma membrane. Clathrin forms a cage-like, polyhedral outer scaffold around a vesicle, to which cargo-selecting clathrin adaptors are attached. Adaptor protein complex (AP2) is the key adaptor in CME. Crystallography has shown AP2 to adopt a range of conformations. Here, we used cryo-electron microscopy, tomography, and subtomogram averaging to determine structures, interactions, and arrangements of clathrin and AP2 at the key steps of coat assembly, from AP2 in solution to membrane-assembled clathrin-coated vesicles (CCVs). Selleckchem SBE-β-CD AP2 binds cargo and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate)-containing membranes via multiple interfaces, undergoing conformational rearrangement from its cytosolic state. The binding mode of AP2 β2 appendage into the clathrin lattice in CCVs and buds implies how the adaptor structurally modulates coat curvature and coat disassembly.The biological pathways that affect drug delivery in vivo remain poorly understood. We hypothesized that altering cell metabolism with phosphatidylinositol (3,4,5)-triphosphate (PIP3), a bioactive lipid upstream of the metabolic pathway PI3K (phosphatidylinositol 3-kinase)/AKT/ mTOR (mammalian target of rapamycin) would transiently increase protein translated by nanoparticle-delivered messenger RNA (mRNA) since these pathways increase growth and proliferation. Instead, we found that PIP3 blocked delivery of clinically-relevant lipid nanoparticles (LNPs) across multiple cell types in vitro and in vivo. PIP3-driven reductions in LNP delivery were not caused by toxicity, cell uptake, or endosomal escape. Interestingly, RNA sequencing and metabolomics analyses suggested an increase in basal metabolic rate. Higher transcriptional activity and mitochondrial expansion led us to formulate two competing hypotheses that explain the reductions in LNP-mediated mRNA delivery. First, PIP3 induced consumption of limited cellular resources, "drowning out" exogenously-delivered mRNA. Second, PIP3 triggers a catabolic response that leads to protein degradation and decreased translation.Gene silencing using small-interfering RNA (siRNA) is a viable therapeutic approach; however, the lack of effective delivery systems limits its clinical translation. Herein, we doped conventional siRNA-liposomal formulations with gold nanoparticles to create "auroliposomes," which significantly enhanced gene silencing. We targeted MICU1, a novel glycolytic switch in ovarian cancer, and delivered MICU1-siRNA using three delivery systems-commercial transfection agents, conventional liposomes, and auroliposomes. Low-dose siRNA via transfection or conventional liposomes was ineffective for MICU1 silencing; however, in auroliposomes, the same dose gave >85% gene silencing. Efficacy was evident from both in vitro growth assays of ovarian cancer cells and in vivo tumor growth in human ovarian cell line-and patient-derived xenograft models. Incorporation of gold nanoparticles shifted intracellular uptake pathways such that liposomes avoided degradation within lysosomes. Auroliposomes were nontoxic to vital organs. Therefore, auroliposomes represent a novel siRNA delivery system with superior efficacy for multiple therapeutic applications.Novel magnetic topological materials pave the way for studying the interplay between band topology and magnetism. However, an intrinsically ferromagnetic topological material with only topological bands at the charge neutrality energy has so far remained elusive. Using rational design, we synthesized MnBi8Te13, a natural heterostructure with [MnBi2Te4] and [Bi2Te3] layers. Thermodynamic, transport, and neutron diffraction measurements show that despite the adjacent [MnBi2Te4] being 44.1 Å apart, MnBi8Te13 manifests long-range ferromagnetism below 10.5 K with strong coupling between magnetism and charge carriers. First-principles calculations and angle-resolved photoemission spectroscopy measurements reveal it is an axion insulator with sizable surface hybridization gaps. Our calculations further demonstrate the hybridization gap persists in the two-dimensional limit with a nontrivial Chern number. Therefore, as an intrinsic ferromagnetic axion insulator with clean low-energy band structures, MnBi8Te13 serves as an ideal system to investigate rich emergent phenomena, including the quantized anomalous Hall effect and quantized magnetoelectric effect.Mechanisms linking immune sensing of DNA danger signals in the extracellular environment to innate pathways in the cytosol are poorly understood. Here, we identify a previously unidentified immune-metabolic axis by which cells respond to purine nucleosides and trigger a type I interferon-β (IFN-β) response. We find that depletion of ADA2, an ectoenzyme that catabolizes extracellular dAdo to dIno, or supplementation of dAdo or dIno stimulates IFN-β. Under conditions of reduced ADA2 enzyme activity, dAdo is transported into cells and undergoes catabolysis by the cytosolic isoenzyme ADA1, driving intracellular accumulation of dIno. dIno is a functional immunometabolite that interferes with the cellular methionine cycle by inhibiting SAM synthetase activity. Inhibition of SAM-dependent transmethylation drives epigenomic hypomethylation and overexpression of immune-stimulatory endogenous retroviral elements that engage cytosolic dsRNA sensors and induce IFN-β. We uncovered a previously unknown cellular signaling pathway that responds to extracellular DNA-derived metabolites, coupling nucleoside catabolism by adenosine deaminases to cellular IFN-β production.